Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2016 | Commentary

Genomics and pharmacogenomics of sepsis: so close and yet so far

Author: James A. Russell

Published in: Critical Care | Issue 1/2016

Login to get access

Abstract

Sapru et al. show in this issue of Critical Care that variants of thrombomodulin and the endothelial protein C receptor, but not protein C, are associated with mortality and organ dysfunction (ventilation-free and organ failure-free days) in ARDS. Hundreds of gene variants have been found prognostic in sepsis. However, none of these prognostic genomic biomarkers are used clinically. Predictive biomarker discovery (pharmacogenomics) usually follows a candidate gene approach, utilizing knowledge of drug pathways. Pharmacogenomics could be applied to enhance efficacy and safety of drugs used for treatment of sepsis (e.g., norepinephrine, epinephrine, vasopressin, and corticosteroids). Pharmacogenomics can enhance drug development in sepsis, which is very important because there is no approved drug for sepsis. Pharmacogenomics biomarkers must pass three milestones: scientific, regulatory, and commercial. Huge challenges remain but great opportunities for pharmacogenomics of sepsis are on the horizon.
Literature
1.
go back to reference Sapru A, Liu KD, Wiemels J, et al. Association of common genetic variation in the protein C pathway genes with clinical outcomes in acute respiratory distress syndrome. Crit Care. 2016;20:151. Sapru A, Liu KD, Wiemels J, et al. Association of common genetic variation in the protein C pathway genes with clinical outcomes in acute respiratory distress syndrome. Crit Care. 2016;20:151.
2.
go back to reference Vincent JL. Individual gene expression and personalised medicine in sepsis. Lancet Respir Med. 2016;4(4):242–43.CrossRefPubMed Vincent JL. Individual gene expression and personalised medicine in sepsis. Lancet Respir Med. 2016;4(4):242–43.CrossRefPubMed
3.
go back to reference Christaki E, Giamarellos-Bourboulis EJ. The beginning of personalized medicine in sepsis: small steps to a bright future. Clin Genet. 2014;86(1):56–61.CrossRefPubMed Christaki E, Giamarellos-Bourboulis EJ. The beginning of personalized medicine in sepsis: small steps to a bright future. Clin Genet. 2014;86(1):56–61.CrossRefPubMed
4.
go back to reference Calvano SE, Xiao W, Richards DR, et al. A network-based analysis of systemic inflammation in humans. Nature. 2005;437(7061):1032–7.CrossRefPubMed Calvano SE, Xiao W, Richards DR, et al. A network-based analysis of systemic inflammation in humans. Nature. 2005;437(7061):1032–7.CrossRefPubMed
5.
go back to reference Walley KR, Thain KR, Russell JA, et al. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med. 2014;6(258):258ra143. Walley KR, Thain KR, Russell JA, et al. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med. 2014;6(258):258ra143.
6.
go back to reference Mebazaa A, Laterre PF, Russell JA, et al. Designing phase 3 sepsis trials: application of learned experiences from critical care trials in acute heart failure. J Int Care. 2016;4:24. Mebazaa A, Laterre PF, Russell JA, et al. Designing phase 3 sepsis trials: application of learned experiences from critical care trials in acute heart failure. J Int Care. 2016;4:24.
7.
go back to reference Nakada TA, Russell JA, Boyd JH, et al. beta2-Adrenergic receptor gene polymorphism is associated with mortality in septic shock. Am J Respir Crit Care Med. 2010;181(2):143–9.CrossRefPubMed Nakada TA, Russell JA, Boyd JH, et al. beta2-Adrenergic receptor gene polymorphism is associated with mortality in septic shock. Am J Respir Crit Care Med. 2010;181(2):143–9.CrossRefPubMed
8.
go back to reference Annane D, Vignon P, Renault A, et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet. 2007;370(9588):676–84.CrossRefPubMed Annane D, Vignon P, Renault A, et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet. 2007;370(9588):676–84.CrossRefPubMed
9.
go back to reference Nakada TA, Russell JA, Wellman H, et al. Leucyl/cystinyl aminopeptidase gene variants in septic shock. Chest. 2011;139(5):1042–9.CrossRefPubMed Nakada TA, Russell JA, Wellman H, et al. Leucyl/cystinyl aminopeptidase gene variants in septic shock. Chest. 2011;139(5):1042–9.CrossRefPubMed
10.
go back to reference Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–87.CrossRefPubMed Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–87.CrossRefPubMed
11.
go back to reference Lasker MV, Leventhal SM, Lim D, et al. Hyperactive human glucocorticoid receptor isoforms and their implications for the stress response. Shock. 2015;43(3):228–32.CrossRefPubMed Lasker MV, Leventhal SM, Lim D, et al. Hyperactive human glucocorticoid receptor isoforms and their implications for the stress response. Shock. 2015;43(3):228–32.CrossRefPubMed
12.
go back to reference Sprung CL, Annane D, Keh D, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.CrossRefPubMed Sprung CL, Annane D, Keh D, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.CrossRefPubMed
13.
go back to reference Nakada TA, Russell JA, Boyd JH, et al. Association of angiotensin II type 1 receptor-associated protein gene polymorphism with increased mortality in septic shock. Crit Care Med. 2011;39(7):1641–8.CrossRefPubMed Nakada TA, Russell JA, Boyd JH, et al. Association of angiotensin II type 1 receptor-associated protein gene polymorphism with increased mortality in septic shock. Crit Care Med. 2011;39(7):1641–8.CrossRefPubMed
14.
go back to reference Walley KR, Russell JA. Protein C −1641 AA is associated with decreased survival and more organ dysfunction in severe sepsis. Crit Care Med. 2007;35(1):12–7.CrossRefPubMed Walley KR, Russell JA. Protein C −1641 AA is associated with decreased survival and more organ dysfunction in severe sepsis. Crit Care Med. 2007;35(1):12–7.CrossRefPubMed
15.
go back to reference Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366(22):2055–64.CrossRefPubMed Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366(22):2055–64.CrossRefPubMed
Metadata
Title
Genomics and pharmacogenomics of sepsis: so close and yet so far
Author
James A. Russell
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1374-6

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue