Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2015 | Research

Early pneumonia and timing of antibiotic therapy in patients after nontraumatic out-of-hospital cardiac arrest

Authors: Kristian Hellenkamp, Sabrina Onimischewski, Jochen Kruppa, Martin Faßhauer, Alexander Becker, Helmut Eiffert, Mark Hünlich, Gerd Hasenfuß, Rolf Wachter

Published in: Critical Care | Issue 1/2016

Login to get access

Abstract

Background

While early pneumonia is common in patients after out-of-hospital cardiac arrest (OHCA), little is known about the impact of pneumonia and the optimal timing of antibiotic therapy after OHCA.

Methods

We conducted a 5-year retrospective cohort study, including patients who suffered from OHCA and were treated with therapeutic hypothermia. ICU treatment was strictly standardized with defined treatment goals and procedures. Medical records, chest radiographic images and microbiological findings were reviewed.

Results

Within the study period, 442 patients were admitted to our medical ICU after successfully resuscitated cardiac arrest. Of those, 174 patients fulfilled all inclusion and no exclusion criteria and were included into final analysis. Pneumonia within the first week could be confirmed in 39 patients (22.4 %) and was confirmed or probable in 100 patients (57.5 %), without a difference between survivors and non-survivors (37.8 % vs. 23.1 % confirmed pneumonia, p = 0.125). In patients with confirmed pneumonia a tracheotomy was performed more frequently (28.2 vs. 12.6 %, p = 0.026) compared to patients without confirmed pneumonia. Importantly, patients with confirmed pneumonia had a longer ICU- (14.0 [8.5-20.0] vs. 8.0 [5.0-14.0] days, p < 0.001) and hospital stay (23.0 [11.5-29.0] vs. 15.0 [6.5-25.0] days, p = 0.016).
A positive end expiratory pressure (PEEP) > =10.5 mbar on day 1 of the hospital stay was identified as early predictor of confirmed pneumonia (odds ratio 2.898, p = 0.006). No other reliable predictor could be identified.
Median time to antibiotic therapy was 8.7 [5.4-22.8] hours, without a difference between patients with or without confirmed pneumonia (p = 0.381) and without a difference between survivors and non-survivors (p = 0.264). Patients receiving antibiotics within 12 hours after admission had a shorter ICU- (8.0 [4.0-14.0] vs. 10.5 [6.0-16.0] vs. 13.5 [8.0-20.0] days, p = 0.004) and hospital-stay (14.0 [6.0-25.0] vs. 16.5 [11.0-27.0] vs. 21.0 [17.0-28.0] days, p = 0.007) compared to patients receiving antibiotics after 12 to 36 or more than 36 hours, respectively.

Conclusions

Early pneumonia may extend length of ICU- and hospital-stay after OHCA and its occurrence is difficult to predict. A delayed initiation of antibiotic therapy in OHCA patients may increase the duration of the ICU- and hospital-stay.
Appendix
Available only for authorised users
Literature
1.
go back to reference Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation. 2010;81:1479–87.CrossRefPubMed Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation. 2010;81:1479–87.CrossRefPubMed
2.
go back to reference Nolan JP, Soar J, Zideman DA, Biarent D, Bossaert LL, Deakin C, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 1. Executive summary. Resuscitation. 2010;81:1219–76.CrossRefPubMed Nolan JP, Soar J, Zideman DA, Biarent D, Bossaert LL, Deakin C, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 1. Executive summary. Resuscitation. 2010;81:1219–76.CrossRefPubMed
3.
go back to reference Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–292.CrossRefPubMed Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–292.CrossRefPubMed
4.
go back to reference Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Böttiger BW, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 2008;118:2452–83.CrossRefPubMed Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Böttiger BW, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 2008;118:2452–83.CrossRefPubMed
5.
go back to reference Deakin CD, Nolan JP, Soar J, Sunde K, Koster RW, Smith GB, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation. 2010;81:1305–52.CrossRefPubMed Deakin CD, Nolan JP, Soar J, Sunde K, Koster RW, Smith GB, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation. 2010;81:1305–52.CrossRefPubMed
6.
go back to reference Bro-Jeppesen J, Kjaergaard J, Wanscher M, Nielsen N, Friberg H, Bjerre M, et al. Systemic inflammatory response and potential prognostic implications after out-of-hospital cardiac arrest: a substudy of the Target Temperature Management Trial. Crit Care Med. 2015;43:1223–32.CrossRefPubMed Bro-Jeppesen J, Kjaergaard J, Wanscher M, Nielsen N, Friberg H, Bjerre M, et al. Systemic inflammatory response and potential prognostic implications after out-of-hospital cardiac arrest: a substudy of the Target Temperature Management Trial. Crit Care Med. 2015;43:1223–32.CrossRefPubMed
7.
go back to reference Mongardon N, Lemiale V, Borderie D, Burke-Gaffney A, Perbet S, Marin N, et al. Plasma thioredoxin levels during post-cardiac arrest syndrome: relationship with severity and outcome. Crit Care. 2013;17:R18.PubMedCentralCrossRefPubMed Mongardon N, Lemiale V, Borderie D, Burke-Gaffney A, Perbet S, Marin N, et al. Plasma thioredoxin levels during post-cardiac arrest syndrome: relationship with severity and outcome. Crit Care. 2013;17:R18.PubMedCentralCrossRefPubMed
8.
go back to reference Mongardon N, Perbet S, Lemiale V, Dumas F, Poupet H, Charpentier J, et al. Infectious complications in out-of-hospital cardiac arrest patients in the therapeutic hypothermia era. Crit Care Med. 2011;39:1359–64.CrossRefPubMed Mongardon N, Perbet S, Lemiale V, Dumas F, Poupet H, Charpentier J, et al. Infectious complications in out-of-hospital cardiac arrest patients in the therapeutic hypothermia era. Crit Care Med. 2011;39:1359–64.CrossRefPubMed
9.
go back to reference Perbet S, Mongardon N, Dumas F, Bruel C, Lemiale V, Mourvillier B, et al. Early-onset pneumonia after cardiac arrest: characteristics, risk factors and influence on prognosis. Am J Respir Crit Care Med. 2011;184:1048–54.CrossRefPubMed Perbet S, Mongardon N, Dumas F, Bruel C, Lemiale V, Mourvillier B, et al. Early-onset pneumonia after cardiac arrest: characteristics, risk factors and influence on prognosis. Am J Respir Crit Care Med. 2011;184:1048–54.CrossRefPubMed
11.
go back to reference Fries M, Stoppe C, Brücken D, Rossaint R, Kuhlen R. Influence of mild therapeutic hypothermia on the inflammatory response after successful resuscitation from cardiac arrest. J Crit Care. 2009;24:453–7.CrossRefPubMed Fries M, Stoppe C, Brücken D, Rossaint R, Kuhlen R. Influence of mild therapeutic hypothermia on the inflammatory response after successful resuscitation from cardiac arrest. J Crit Care. 2009;24:453–7.CrossRefPubMed
12.
go back to reference Calandra T, Cohen J. International Sepsis Forum Definition of Infection in the ICU Consensus Conference. The international sepsis forum consensus conference on definitions of infection in the intensive care unit. Crit Care Med. 2005;33:1538–48.CrossRefPubMed Calandra T, Cohen J. International Sepsis Forum Definition of Infection in the ICU Consensus Conference. The international sepsis forum consensus conference on definitions of infection in the intensive care unit. Crit Care Med. 2005;33:1538–48.CrossRefPubMed
13.
go back to reference Pabst D, Römer S, Samol A, Kümpers P, Waltenberger J, Lebiedz P. Predictors and outcome of early-onset pneumonia after out-of-hospital cardiac arrest. Respir Care. 2013;58:1514–20.CrossRefPubMed Pabst D, Römer S, Samol A, Kümpers P, Waltenberger J, Lebiedz P. Predictors and outcome of early-onset pneumonia after out-of-hospital cardiac arrest. Respir Care. 2013;58:1514–20.CrossRefPubMed
14.
go back to reference Nielsen N, Sunde K, Hovdenes J, Riker RR, Rubertsson S, Stammet P, et al. Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit Care Med. 2011;39:57–64.CrossRefPubMed Nielsen N, Sunde K, Hovdenes J, Riker RR, Rubertsson S, Stammet P, et al. Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit Care Med. 2011;39:57–64.CrossRefPubMed
15.
go back to reference Gagnon DJ, Nielsen N, Fraser GL, Riker RR, Dziodzio J, Sunde K, et al. Prophylactic antibiotics are associated with a lower incidence of pneumonia in cardiac arrest survivors treated with targeted temperature management. Resuscitation. 2015;92:154–9.CrossRefPubMed Gagnon DJ, Nielsen N, Fraser GL, Riker RR, Dziodzio J, Sunde K, et al. Prophylactic antibiotics are associated with a lower incidence of pneumonia in cardiac arrest survivors treated with targeted temperature management. Resuscitation. 2015;92:154–9.CrossRefPubMed
16.
go back to reference Sagalyn E, Band RA, Gaieski DF, Abella BS. Therapeutic hypothermia after cardiac arrest in clinical practice: review and compilation of recent experiences. Crit Care Med. 2009;37(7 Suppl):S223–6.CrossRefPubMed Sagalyn E, Band RA, Gaieski DF, Abella BS. Therapeutic hypothermia after cardiac arrest in clinical practice: review and compilation of recent experiences. Crit Care Med. 2009;37(7 Suppl):S223–6.CrossRefPubMed
17.
go back to reference MacLaren R, Gallagher J, Shin J, Varnado S, Nguyen L. Assessment of adverse events and predictors of neurological recovery after therapeutic hypothermia. Ann Pharmacother. 2014;48:17–25.CrossRefPubMed MacLaren R, Gallagher J, Shin J, Varnado S, Nguyen L. Assessment of adverse events and predictors of neurological recovery after therapeutic hypothermia. Ann Pharmacother. 2014;48:17–25.CrossRefPubMed
18.
go back to reference Kim YM, Youn CS, Kim SH, Lee BK, Cho IS, Cho GC, et al. Adverse events associated with poor neurological outcome during targeted temperature management and advanced critical care after out-of-hospital cardiac arrest. Crit Care. 2015;19:283.PubMedCentralCrossRefPubMed Kim YM, Youn CS, Kim SH, Lee BK, Cho IS, Cho GC, et al. Adverse events associated with poor neurological outcome during targeted temperature management and advanced critical care after out-of-hospital cardiac arrest. Crit Care. 2015;19:283.PubMedCentralCrossRefPubMed
19.
go back to reference Hopstaken RM, Witbraad T, van Engelshoven JM, Dinant GJ. Inter-observer variation in the interpretation of chest radiographs for pneumonia in community-acquired lower respiratory tract infections. Clin Radiol. 2004;59:743–52.CrossRefPubMed Hopstaken RM, Witbraad T, van Engelshoven JM, Dinant GJ. Inter-observer variation in the interpretation of chest radiographs for pneumonia in community-acquired lower respiratory tract infections. Clin Radiol. 2004;59:743–52.CrossRefPubMed
20.
go back to reference Lachmann RA, van Kaam AH, Haitsma JJ, Lachmann B. High positive end-expiratory pressure levels promote bacterial translocation in experimental pneumonia. Intensive Care Med. 2007;33:1687–9.CrossRef Lachmann RA, van Kaam AH, Haitsma JJ, Lachmann B. High positive end-expiratory pressure levels promote bacterial translocation in experimental pneumonia. Intensive Care Med. 2007;33:1687–9.CrossRef
21.
go back to reference Davies KJ, Walters JH, Kerslake IM, Greenwood R, Thomas MJ. Early antibiotics improve survival following out-of hospital cardiac arrest. Resuscitation. 2013;84:616–9.CrossRefPubMed Davies KJ, Walters JH, Kerslake IM, Greenwood R, Thomas MJ. Early antibiotics improve survival following out-of hospital cardiac arrest. Resuscitation. 2013;84:616–9.CrossRefPubMed
22.
go back to reference Friedant AJ, Gouse BM, Boehme AK, Siegler JE, Albright KC, Monlezun DJ, et al. A simple prediction score for developing a hospital-acquired infection after acute ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24:680–6.CrossRefPubMed Friedant AJ, Gouse BM, Boehme AK, Siegler JE, Albright KC, Monlezun DJ, et al. A simple prediction score for developing a hospital-acquired infection after acute ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24:680–6.CrossRefPubMed
Metadata
Title
Early pneumonia and timing of antibiotic therapy in patients after nontraumatic out-of-hospital cardiac arrest
Authors
Kristian Hellenkamp
Sabrina Onimischewski
Jochen Kruppa
Martin Faßhauer
Alexander Becker
Helmut Eiffert
Mark Hünlich
Gerd Hasenfuß
Rolf Wachter
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1191-y

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue