Skip to main content
Top
Published in: Critical Care 1/2015

Open Access 01-12-2015 | Research

Discordant identification of pediatric severe sepsis by research and clinical definitions in the SPROUT international point prevalence study

Authors: Scott L. Weiss, Julie C. Fitzgerald, Frank A. Maffei, Jason M. Kane, Antonio Rodriguez-Nunez, Deyin D. Hsing, Deborah Franzon, Sze Ying Kee, Jenny L. Bush, Jason A. Roy, Neal J. Thomas, Vinay M. Nadkarni, for the SPROUT Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network

Published in: Critical Care | Issue 1/2015

Login to get access

Abstract

Introduction

Consensus criteria for pediatric severe sepsis have standardized enrollment for research studies. However, the extent to which critically ill children identified by consensus criteria reflect physician diagnosis of severe sepsis, which underlies external validity for pediatric sepsis research, is not known. We sought to determine the agreement between physician diagnosis and consensus criteria to identify pediatric patients with severe sepsis across a network of international pediatric intensive care units (PICUs).

Methods

We conducted a point prevalence study involving 128 PICUs in 26 countries across 6 continents. Over the course of 5 study days, 6925 PICU patients <18 years of age were screened, and 706 with severe sepsis defined either by physician diagnosis or on the basis of 2005 International Pediatric Sepsis Consensus Conference consensus criteria were enrolled. The primary endpoint was agreement of pediatric severe sepsis between physician diagnosis and consensus criteria as measured using Cohen’s κ. Secondary endpoints included characteristics and clinical outcomes for patients identified using physician diagnosis versus consensus criteria.

Results

Of the 706 patients, 301 (42.6 %) met both definitions. The inter-rater agreement (κ ± SE) between physician diagnosis and consensus criteria was 0.57 ± 0.02. Of the 438 patients with a physician’s diagnosis of severe sepsis, only 69 % (301 of 438) would have been eligible to participate in a clinical trial of pediatric severe sepsis that enrolled patients based on consensus criteria. Patients with physician-diagnosed severe sepsis who did not meet consensus criteria were younger and had lower severity of illness and lower PICU mortality than those meeting consensus criteria or both definitions. After controlling for age, severity of illness, number of comorbid conditions, and treatment in developed versus resource-limited regions, patients identified with severe sepsis by physician diagnosis alone or by consensus criteria alone did not have PICU mortality significantly different from that of patients identified by both physician diagnosis and consensus criteria.

Conclusions

Physician diagnosis of pediatric severe sepsis achieved only moderate agreement with consensus criteria, with physicians diagnosing severe sepsis more broadly. Consequently, the results of a research study based on consensus criteria may have limited generalizability to nearly one-third of PICU patients diagnosed with severe sepsis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hartman ME, Linde-Zwirble WT, Angus DC, Watson RS. Trends in the epidemiology of pediatric severe sepsis. Pediatr Crit Care Med. 2013;14:868–693. Hartman ME, Linde-Zwirble WT, Angus DC, Watson RS. Trends in the epidemiology of pediatric severe sepsis. Pediatr Crit Care Med. 2013;14:868–693.
2.
go back to reference Ruth A, McCracken CE, Fortenberry JD, Hall M, Simon HK, Hebbar KB. Pediatric severe sepsis: current trends and outcomes from the pediatric health information systems database. Pediatr Crit Care Med. 2014;15:828–38.CrossRef Ruth A, McCracken CE, Fortenberry JD, Hall M, Simon HK, Hebbar KB. Pediatric severe sepsis: current trends and outcomes from the pediatric health information systems database. Pediatr Crit Care Med. 2014;15:828–38.CrossRef
3.
go back to reference Jaramillo-Bustamante JC, Marín-Agudelo A, Fernández-Laverde M, Bareño-Silva J. Epidemiology of sepsis in pediatric intensive care units: first Colombian multicenter study. Pediatr Crit Care Med. 2012;13:501–8.CrossRef Jaramillo-Bustamante JC, Marín-Agudelo A, Fernández-Laverde M, Bareño-Silva J. Epidemiology of sepsis in pediatric intensive care units: first Colombian multicenter study. Pediatr Crit Care Med. 2012;13:501–8.CrossRef
4.
go back to reference Wang Y, Sun B, Yue H, Lin X, Li B, Yang X, et al. An epidemiologic survey of pediatric sepsis in regional hospitals in China. Pediatr Crit Care Med. 2014;15:814–20.CrossRef Wang Y, Sun B, Yue H, Lin X, Li B, Yang X, et al. An epidemiologic survey of pediatric sepsis in regional hospitals in China. Pediatr Crit Care Med. 2014;15:814–20.CrossRef
5.
go back to reference Balamuth F, Weiss SL, Neuman MI, Scott H, Brady PW, Paul R, et al. Pediatric severe sepsis in U.S. children’s hospitals. Pediatr Crit Care Med. 2014;15:798–805.CrossRef Balamuth F, Weiss SL, Neuman MI, Scott H, Brady PW, Paul R, et al. Pediatric severe sepsis in U.S. children’s hospitals. Pediatr Crit Care Med. 2014;15:798–805.CrossRef
6.
go back to reference Goldstein B, Giroir B, Randolph A. International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6:2–8.CrossRef Goldstein B, Giroir B, Randolph A. International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6:2–8.CrossRef
7.
go back to reference Opal SM, Dellinger RP, Vincent JL, Masur H, Angus DC. The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C? Crit Care Med. 2014;42:1714–21.CrossRef Opal SM, Dellinger RP, Vincent JL, Masur H, Angus DC. The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C? Crit Care Med. 2014;42:1714–21.CrossRef
8.
go back to reference Brierley J, Carcillo JA, Choong K, Cornell T, Decaen A, Deymann A, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009;37:666–88.CrossRef Brierley J, Carcillo JA, Choong K, Cornell T, Decaen A, Deymann A, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009;37:666–88.CrossRef
9.
go back to reference Iwashyna TJ, Odden A, Rohde J, Bonham C, Kuhn L, Malani P, et al. Identifying patients with severe sepsis using administrative claims: patient-level validation of the Angus implementation of the international consensus conference definition of severe sepsis. Med Care. 2012;52:e39–43.CrossRef Iwashyna TJ, Odden A, Rohde J, Bonham C, Kuhn L, Malani P, et al. Identifying patients with severe sepsis using administrative claims: patient-level validation of the Angus implementation of the international consensus conference definition of severe sepsis. Med Care. 2012;52:e39–43.CrossRef
10.
go back to reference Weiss SL, Parker B, Bullock ME, Swartz S, Price C, Wainwright MS, et al. Defining pediatric sepsis by different criteria: discrepancies in populations and implications for clinical practice. Pediatr Crit Care Med. 2012;13:e219–26.CrossRef Weiss SL, Parker B, Bullock ME, Swartz S, Price C, Wainwright MS, et al. Defining pediatric sepsis by different criteria: discrepancies in populations and implications for clinical practice. Pediatr Crit Care Med. 2012;13:e219–26.CrossRef
11.
go back to reference Dougherty D, Conway PH. The “3T’s” road map to transform US health care: the “how” of high-quality care. JAMA. 2008;299:2319–21.CrossRef Dougherty D, Conway PH. The “3T’s” road map to transform US health care: the “how” of high-quality care. JAMA. 2008;299:2319–21.CrossRef
12.
go back to reference Rothwell PM. External validity of randomised controlled trials: “to whom do the results of this trial apply?”. Lancet. 2005;365:82–93.CrossRef Rothwell PM. External validity of randomised controlled trials: “to whom do the results of this trial apply?”. Lancet. 2005;365:82–93.CrossRef
13.
go back to reference Partridge SR, Juan SJ, McGeechan K, Bauman A, Allman-Farinelli M. Poor quality of external validity reporting limits generalizability of overweight and/or obesity lifestyle prevention interventions in young adults: a systematic review. Obes Rev. 2014;16:13–31.CrossRef Partridge SR, Juan SJ, McGeechan K, Bauman A, Allman-Farinelli M. Poor quality of external validity reporting limits generalizability of overweight and/or obesity lifestyle prevention interventions in young adults: a systematic review. Obes Rev. 2014;16:13–31.CrossRef
14.
go back to reference Charlson ME, Horwitz RI. Applying results of randomised trials to clinical practice: impact of losses before randomisation. Br Med J (Clin Res Ed). 1984;289:1281–4.CrossRef Charlson ME, Horwitz RI. Applying results of randomised trials to clinical practice: impact of losses before randomisation. Br Med J (Clin Res Ed). 1984;289:1281–4.CrossRef
15.
go back to reference Hagg L, Johansson C, Jansson JH, Johansson L. External validity of the ARISTOTLE trial in real-life atrial fibrillation patients. Cardiovasc Ther. 2014;32:214–8.CrossRef Hagg L, Johansson C, Jansson JH, Johansson L. External validity of the ARISTOTLE trial in real-life atrial fibrillation patients. Cardiovasc Ther. 2014;32:214–8.CrossRef
16.
go back to reference Lee S, Monz BU, Clemens A, Brueckmann M, Lip GYH. Representativeness of the dabigatran, apixaban and rivaroxaban clinical trial populations to real-world atrial fibrillation patients in the United Kingdom: a cross-sectional analysis using the General Practice Research Database. BMJ Open. 2012;2, e001768.CrossRef Lee S, Monz BU, Clemens A, Brueckmann M, Lip GYH. Representativeness of the dabigatran, apixaban and rivaroxaban clinical trial populations to real-world atrial fibrillation patients in the United Kingdom: a cross-sectional analysis using the General Practice Research Database. BMJ Open. 2012;2, e001768.CrossRef
17.
go back to reference Maasland L, van Oostenbrugge RJ, Franke CF, Scholte Op Reimer WJ, Koudstaal PJ, Dippel DW. Patients enrolled in large randomized clinical trials of antiplatelet treatment for prevention after transient ischemic attack or ischemic stroke are not representative of patients in clinical practice: the Netherlands Stroke Survey. Stroke. 2009;40:2662–8.CrossRef Maasland L, van Oostenbrugge RJ, Franke CF, Scholte Op Reimer WJ, Koudstaal PJ, Dippel DW. Patients enrolled in large randomized clinical trials of antiplatelet treatment for prevention after transient ischemic attack or ischemic stroke are not representative of patients in clinical practice: the Netherlands Stroke Survey. Stroke. 2009;40:2662–8.CrossRef
18.
go back to reference Weiss SL, Fitzgerald JC, Pappachan J, Wheeler D, Jaramillo-Bustamante JC, Salloo A, et al. Global epidemiology of pediatric severe sepsis: the Sepsis PRevalence, OUtcomes, and Therapies study. Am J Respir Crit Care Med. 2015;191:1147–57.CrossRef Weiss SL, Fitzgerald JC, Pappachan J, Wheeler D, Jaramillo-Bustamante JC, Salloo A, et al. Global epidemiology of pediatric severe sepsis: the Sepsis PRevalence, OUtcomes, and Therapies study. Am J Respir Crit Care Med. 2015;191:1147–57.CrossRef
19.
go back to reference Lacroix J, Hebert PC, Hutchison JS, Hume HA, Tucci M, Ducruet T, et al. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med. 2007;356:1609–19.CrossRef Lacroix J, Hebert PC, Hutchison JS, Hume HA, Tucci M, Ducruet T, et al. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med. 2007;356:1609–19.CrossRef
20.
go back to reference Karam O, Tucci M, Ducruet T, Hume HA, Lacroix J, Gauvin F. Red blood cell transfusion thresholds in pediatric patients with sepsis. Pediatr Crit Care Med. 2011;12:512–8.CrossRef Karam O, Tucci M, Ducruet T, Hume HA, Lacroix J, Gauvin F. Red blood cell transfusion thresholds in pediatric patients with sepsis. Pediatr Crit Care Med. 2011;12:512–8.CrossRef
21.
go back to reference Proulx F, Fayon M, Farrell CA, Lacroix J, Gauthier M. Epidemiology of sepsis and multiple organ dysfunction syndrome in children. Chest. 1996;109:1033–7.CrossRef Proulx F, Fayon M, Farrell CA, Lacroix J, Gauthier M. Epidemiology of sepsis and multiple organ dysfunction syndrome in children. Chest. 1996;109:1033–7.CrossRef
22.
go back to reference Straney L, Clements A, Parslow RC, Pearson G, Shann F, Alexander J, et al. Paediatric index of mortality 3: an updated model for predicting mortality in pediatric intensive care. Pediatr Crit Care Med. 2013;14:673–81.CrossRef Straney L, Clements A, Parslow RC, Pearson G, Shann F, Alexander J, et al. Paediatric index of mortality 3: an updated model for predicting mortality in pediatric intensive care. Pediatr Crit Care Med. 2013;14:673–81.CrossRef
23.
go back to reference Leteurtre S, Martinot A, Duhamel A, Proulx F, Grandbastien B, Cotting J, et al. Validation of the paediatric logistic organ dysfunction (PELOD) score: prospective, observational, multicentre study. Lancet. 2003;362:192–7. A published erratum appears in Lancet. 2006;367:897, 902.CrossRef Leteurtre S, Martinot A, Duhamel A, Proulx F, Grandbastien B, Cotting J, et al. Validation of the paediatric logistic organ dysfunction (PELOD) score: prospective, observational, multicentre study. Lancet. 2003;362:192–7. A published erratum appears in Lancet. 2006;367:897, 902.CrossRef
24.
go back to reference Fiser DH. Assessing the outcome of pediatric intensive care. J Pediatr. 1992;121:68–74.CrossRef Fiser DH. Assessing the outcome of pediatric intensive care. J Pediatr. 1992;121:68–74.CrossRef
25.
go back to reference Farris RW, Weiss NS, Zimmerman JJ. Functional outcomes in pediatric severe sepsis: further analysis of the researching severe sepsis and organ dysfunction in children: a global perspective trial. Pediatr Crit Care Med. 2013;14:835–42.CrossRef Farris RW, Weiss NS, Zimmerman JJ. Functional outcomes in pediatric severe sepsis: further analysis of the researching severe sepsis and organ dysfunction in children: a global perspective trial. Pediatr Crit Care Med. 2013;14:835–42.CrossRef
26.
go back to reference Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.CrossRef Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.CrossRef
27.
go back to reference Choong K, Bohn D, Fraser DD, Gaboury I, Hutchison JS, Joffe AR, et al. Vasopressin in pediatric vasodilatory shock: a multicenter randomized controlled trial. Am J Respir Crit Care Med. 2009;180:632–9.CrossRef Choong K, Bohn D, Fraser DD, Gaboury I, Hutchison JS, Joffe AR, et al. Vasopressin in pediatric vasodilatory shock: a multicenter randomized controlled trial. Am J Respir Crit Care Med. 2009;180:632–9.CrossRef
28.
go back to reference Nadel S, Goldstein B, Williams MD, Dalton H, Peters M, Macias WL, et al. Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet. 2007;369:836–43. Nadel S, Goldstein B, Williams MD, Dalton H, Peters M, Macias WL, et al. Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet. 2007;369:836–43.
29.
go back to reference de Oliveira CF, de Oliveira DSF, Gottschald AFC, Moura JDG, Costa GA, Ventura AC, et al. ACCM/PALS haemodynamic support guidelines for paediatric septic shock: an outcomes comparison with and without monitoring central venous oxygen saturation. Intensive Care Med. 2008;34:1065–75.CrossRef de Oliveira CF, de Oliveira DSF, Gottschald AFC, Moura JDG, Costa GA, Ventura AC, et al. ACCM/PALS haemodynamic support guidelines for paediatric septic shock: an outcomes comparison with and without monitoring central venous oxygen saturation. Intensive Care Med. 2008;34:1065–75.CrossRef
30.
go back to reference Kaukonen KM, Bailey M, Pilcher D, Cooper DJ, Bellomo R. Systemic inflammatory response syndrome criteria in defining severe sepsis. N Engl J Med. 2015;372:1629–38. Kaukonen KM, Bailey M, Pilcher D, Cooper DJ, Bellomo R. Systemic inflammatory response syndrome criteria in defining severe sepsis. N Engl J Med. 2015;372:1629–38.
31.
go back to reference Scott HF, Deakyne SJ, Woods JM, Bajaj L. The prevalence and diagnostic utility of systemic inflammatory response syndrome vital signs in a pediatric emergency department. Acad Emerg Med. 2015;22:381–9. Scott HF, Deakyne SJ, Woods JM, Bajaj L. The prevalence and diagnostic utility of systemic inflammatory response syndrome vital signs in a pediatric emergency department. Acad Emerg Med. 2015;22:381–9.
32.
go back to reference Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: consensus recommendations from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16:428–39.CrossRef Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: consensus recommendations from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16:428–39.CrossRef
Metadata
Title
Discordant identification of pediatric severe sepsis by research and clinical definitions in the SPROUT international point prevalence study
Authors
Scott L. Weiss
Julie C. Fitzgerald
Frank A. Maffei
Jason M. Kane
Antonio Rodriguez-Nunez
Deyin D. Hsing
Deborah Franzon
Sze Ying Kee
Jenny L. Bush
Jason A. Roy
Neal J. Thomas
Vinay M. Nadkarni
for the SPROUT Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2015
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-015-1055-x

Other articles of this Issue 1/2015

Critical Care 1/2015 Go to the issue