Skip to main content
Top
Published in: Critical Care 1/2015

Open Access 01-12-2015 | Research

Ubiquinol (reduced Coenzyme Q10) in patients with severe sepsis or septic shock: a randomized, double-blind, placebo-controlled, pilot trial

Authors: Michael W. Donnino, Sharri J. Mortensen, Lars W. Andersen, Maureen Chase, Katherine M. Berg, Julia Balkema, Jeejabai Radhakrishnan, Raúl J. Gazmuri, Xiaowen Liu, Michael N. Cocchi

Published in: Critical Care | Issue 1/2015

Login to get access

Abstract

Introduction

We previously found decreased levels of Coenzyme Q10 (CoQ10) in patients with septic shock. The objective of the current study was to assess whether the provision of exogenous ubiquinol (the reduced form of CoQ10) could increase plasma CoQ10 levels and improve mitochondrial function.

Methods

We performed a randomized, double-blind, pilot trial at a single, tertiary care hospital. Adults (age ≥18 years) with severe sepsis or septic shock between November 2012 and January 2014 were included. Patients received 200 mg enteral ubiquinol or placebo twice a day for up to seven days. Blood draws were obtained at baseline (0 h), 12, 24, 48, and 72 h. The primary outcome of the study was change in plasma CoQ10 parameters (total CoQ10 levels, CoQ10 levels relative to cholesterol levels, and levels of oxidized and reduced CoQ10). Secondary outcomes included assessment of: 1) vascular endothelial biomarkers, 2) inflammatory biomarkers, 3) biomarkers related to mitochondrial injury including cytochrome c levels, and 4) clinical outcomes. CoQ10 levels and biomarkers were compared between groups using repeated measures models.

Results

We enrolled 38 patients: 19 in the CoQ10 group and 19 in the placebo group. The mean patient age was 62 ± 16 years and 47 % were female. Baseline characteristics and CoQ10 levels were similar for both groups. There was a significant increase in total CoQ10 levels, CoQ10 levels relative to cholesterol levels, and levels of oxidized and reduced CoQ10 in the ubiquinol group compared to the placebo group. We found no difference between the two groups in any of the secondary outcomes.

Conclusions

In this pilot trial we showed that plasma CoQ10 levels could be increased in patients with severe sepsis or septic shock, with the administration of oral ubiquinol. Further research is needed to address whether ubiquinol administration can result in improved clinical outcomes in this patient population.

Trial registration

Clinicaltrials.gov identifier NCT01948063. Registered on 18 February 2013.
Literature
2.
go back to reference Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.CrossRefPubMed Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.CrossRefPubMed
3.
go back to reference Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825–31.CrossRefPubMed Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825–31.CrossRefPubMed
6.
go back to reference Investigators PCESS, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93. doi:10.1056/NEJMoa1401602.CrossRef Investigators PCESS, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93. doi:10.​1056/​NEJMoa1401602.CrossRef
8.
go back to reference Arise Investigators and the Anzics Clinical Trials Group, Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506. doi:10.1056/NEJMoa1404380.CrossRef Arise Investigators and the Anzics Clinical Trials Group, Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506. doi:10.​1056/​NEJMoa1404380.CrossRef
11.
go back to reference Hosoe K, Kitano M, Kishida H, Kubo H, Fujii K, Kitahara M. Study on safety and bioavailability of ubiquinol (Kaneka QH) after single and 4-week multiple oral administration to healthy volunteers. Regul Toxicol Pharmacol. 2007;47:19–28. doi:10.1016/j.yrtph.2006.07.001.CrossRefPubMed Hosoe K, Kitano M, Kishida H, Kubo H, Fujii K, Kitahara M. Study on safety and bioavailability of ubiquinol (Kaneka QH) after single and 4-week multiple oral administration to healthy volunteers. Regul Toxicol Pharmacol. 2007;47:19–28. doi:10.​1016/​j.​yrtph.​2006.​07.​001.CrossRefPubMed
13.
go back to reference Tang PH, Miles MV, DeGrauw A, Hershey A, Pesce A. HPLC analysis of reduced and oxidized coenzyme Q(10) in human plasma. Clin Chem. 2001;47:256–65.CrossRefPubMed Tang PH, Miles MV, DeGrauw A, Hershey A, Pesce A. HPLC analysis of reduced and oxidized coenzyme Q(10) in human plasma. Clin Chem. 2001;47:256–65.CrossRefPubMed
14.
go back to reference Radhakrishnan J, Wang S, Ayoub IM, Kolarova JD, Levine RF, Gazmuri RJ. Circulating levels of cytochrome c after resuscitation from cardiac arrest: a marker of mitochondrial injury and predictor of survival. Am J Physiol Heart Circ Physiol. 2007;292:H767–75. doi:10.1152/ajpheart.00468.2006.CrossRefPubMed Radhakrishnan J, Wang S, Ayoub IM, Kolarova JD, Levine RF, Gazmuri RJ. Circulating levels of cytochrome c after resuscitation from cardiac arrest: a marker of mitochondrial injury and predictor of survival. Am J Physiol Heart Circ Physiol. 2007;292:H767–75. doi:10.​1152/​ajpheart.​00468.​2006.CrossRefPubMed
19.
go back to reference Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta. 2004;1660:171–99.CrossRefPubMed Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta. 2004;1660:171–99.CrossRefPubMed
25.
go back to reference American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864–74. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864–74.
26.
go back to reference Trager K, DeBacker D, Radermacher P. Metabolic alterations in sepsis and vasoactive drug-related metabolic effects. Curr Opin Crit Care. 2003;9:271–8.CrossRefPubMed Trager K, DeBacker D, Radermacher P. Metabolic alterations in sepsis and vasoactive drug-related metabolic effects. Curr Opin Crit Care. 2003;9:271–8.CrossRefPubMed
28.
go back to reference Fink MP. Cytopathic hypoxia. Mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Crit Care Clin. 2001;17:219–37.CrossRefPubMed Fink MP. Cytopathic hypoxia. Mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Crit Care Clin. 2001;17:219–37.CrossRefPubMed
34.
go back to reference Adarsh K, Kaur H, Mohan V. Coenzyme Q10 (CoQ10) in isolated diastolic heart failure in hypertrophic cardiomyopathy (HCM). Biofactors. 2008;32:145–9.CrossRefPubMed Adarsh K, Kaur H, Mohan V. Coenzyme Q10 (CoQ10) in isolated diastolic heart failure in hypertrophic cardiomyopathy (HCM). Biofactors. 2008;32:145–9.CrossRefPubMed
36.
go back to reference Stamelou M, Reuss A, Pilatus U, Magerkurth J, Niklowitz P, Eggert KM, et al. Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov Disord. 2008;23:942–9. doi:10.1002/mds.22023.CrossRefPubMed Stamelou M, Reuss A, Pilatus U, Magerkurth J, Niklowitz P, Eggert KM, et al. Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov Disord. 2008;23:942–9. doi:10.​1002/​mds.​22023.CrossRefPubMed
39.
go back to reference Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, et al. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol. 2002;59:1541–50.CrossRefPubMed Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, et al. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol. 2002;59:1541–50.CrossRefPubMed
40.
go back to reference Shults CW, Beal MF, Fontaine D, Nakano K, Haas RH. Absorption, tolerability, and effects on mitochondrial activity of oral coenzyme Q10 in parkinsonian patients. Neurology. 1998;50:793–5.CrossRefPubMed Shults CW, Beal MF, Fontaine D, Nakano K, Haas RH. Absorption, tolerability, and effects on mitochondrial activity of oral coenzyme Q10 in parkinsonian patients. Neurology. 1998;50:793–5.CrossRefPubMed
41.
go back to reference Parkinson Study Group QEI, Beal MF, Oakes D, Shoulson I, Henchcliffe C, Galpern WR, et al. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol. 2014;71:543–52. doi:10.1001/jamaneurol.2014.131.CrossRef Parkinson Study Group QEI, Beal MF, Oakes D, Shoulson I, Henchcliffe C, Galpern WR, et al. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol. 2014;71:543–52. doi:10.​1001/​jamaneurol.​2014.​131.CrossRef
Metadata
Title
Ubiquinol (reduced Coenzyme Q10) in patients with severe sepsis or septic shock: a randomized, double-blind, placebo-controlled, pilot trial
Authors
Michael W. Donnino
Sharri J. Mortensen
Lars W. Andersen
Maureen Chase
Katherine M. Berg
Julia Balkema
Jeejabai Radhakrishnan
Raúl J. Gazmuri
Xiaowen Liu
Michael N. Cocchi
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2015
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-015-0989-3

Other articles of this Issue 1/2015

Critical Care 1/2015 Go to the issue