Skip to main content
Top
Published in: Critical Care 1/2015

Open Access 01-12-2015 | Research

Evolution of chronic renal impairment and long-term mortality after de novo acute kidney injury in the critically ill; a Swedish multi-centre cohort study

Authors: Claire Rimes-Stigare, Paolo Frumento, Matteo Bottai, Johan Mårtensson, Claes-Roland Martling, Sten M Walther, Göran Karlström, Max Bell

Published in: Critical Care | Issue 1/2015

Login to get access

Abstract

Introduction

Acute Kidney Injury (AKI) is common in critical ill populations and its association with high short-term mortality is well established. However, long-term risks of death and renal dysfunction are poorly understood and few studies exclude patients with pre-existing renal disease, meaning outcome for de novo AKI has been difficult to elicit. We aimed to compare the long-term risk of Chronic Kidney Disease (CKD), End Stage Renal Disease (ESRD) and mortality in critically ill patients with and without severe de novo AKI.

Method

This cohort study was conducted between 2005 and 2011 in Swedish intensive care units (ICU). Data from 130134 adult patients listed on the Swedish intensive care register-database was linked with other national registries. Patients with pre-existing CKD (4192) and ESRD (1389) were excluded, as were cases (26771) with incomplete data. Patients were classified according to AKI exposure during ICU admission. Outcome in the de novo AKI group was compared to the non-exposed (no-AKI) intensive care control group. Primary outcome was all-cause mortality. Follow-up ranged from one to seven years (median 2.1 years). Secondary outcomes were incidence of CKD and ESRD and median follow-up was 1.3 years.

Results

Of 97 782 patients, 5273 (5.4%) had de novo AKI. These patients had significantly higher crude mortality at one (48.4% vs. 24.6%) and five years (61.8% vs. 39.1%) compared to the control group. The first 30% of deaths in AKI patients occurred within 11 days of ICU admission whilst the 30-centile in the no-AKI group died by 748 days. CKD was significantly more common in AKI survivors at one year (6.0% vs. 0.44%) than in no-AKI group (adjusted incidence rate ratio (IRR) 7.6). AKI patients also had significantly higher rates of ESRD at one (2.0% vs. 0.08%) and at five years (3.9% vs. 0.3%) than those in the comparison group (adjusted IRR 22.5).

Conclusion

This large cohort study demonstrated that de novo AKI is associated with increased short and long-term risk of death. AKI is independently associated with increased risk of CKD and ESRD as compared to an ICU control population. Severe de novo AKI survivors should be routinely followed-up and their renal function monitored.
Appendix
Available only for authorised users
Literature
1.
go back to reference Goldstein SL, Jaber BL, Faubel S, Chawla LS. AKI transition of care: a potential opportunity to detect and prevent CKD. Clin J Am Soc Nephrol. 2013;8:476–83.PubMed Goldstein SL, Jaber BL, Faubel S, Chawla LS. AKI transition of care: a potential opportunity to detect and prevent CKD. Clin J Am Soc Nephrol. 2013;8:476–83.PubMed
2.
go back to reference Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, et al. Acute kidney injury: an increasing global concern. Lancet. 2013;382:170–9.PubMed Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, et al. Acute kidney injury: an increasing global concern. Lancet. 2013;382:170–9.PubMed
3.
go back to reference Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, et al. World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol. 2013;8:1482–93.PubMedPubMedCentral Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, et al. World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol. 2013;8:1482–93.PubMedPubMedCentral
4.
go back to reference Bellomo R. The epidemiology of acute renal failure: 1975 versus 2005. Curr Opin Crit Care. 2006;12:557–60.PubMed Bellomo R. The epidemiology of acute renal failure: 1975 versus 2005. Curr Opin Crit Care. 2006;12:557–60.PubMed
5.
go back to reference Uchino S. The epidemiology of acute renal failure in the world. Curr Opin Crit Care. 2006;12:538–43.PubMed Uchino S. The epidemiology of acute renal failure in the world. Curr Opin Crit Care. 2006;12:538–43.PubMed
6.
go back to reference Kellum JA, Hoste EAJ. Acute kidney injury: epidemiology and assessment. Scand J Clin Lab Invest Suppl. 2008;241:6–11.PubMed Kellum JA, Hoste EAJ. Acute kidney injury: epidemiology and assessment. Scand J Clin Lab Invest Suppl. 2008;241:6–11.PubMed
7.
go back to reference Rimes-Stigare C, Awad A, Mårtensson J, Martling CR, Bell M. Long-term outcome after acute renal replacement therapy: a narrative review. Acta Anaesthesiol Scand. 2012;56:138–46.PubMed Rimes-Stigare C, Awad A, Mårtensson J, Martling CR, Bell M. Long-term outcome after acute renal replacement therapy: a narrative review. Acta Anaesthesiol Scand. 2012;56:138–46.PubMed
8.
go back to reference Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380:756–66.PubMed Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380:756–66.PubMed
9.
go back to reference Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81:442–8.PubMed Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81:442–8.PubMed
10.
go back to reference Ponte B, Felipe C, Muriel A, Tenorio MT, Liaño F. Long-term functional evolution after an acute kidney injury: a 10-year study. Nephrol Dial Transplant. 2008;23:3859–66.PubMed Ponte B, Felipe C, Muriel A, Tenorio MT, Liaño F. Long-term functional evolution after an acute kidney injury: a 10-year study. Nephrol Dial Transplant. 2008;23:3859–66.PubMed
11.
go back to reference Gammelager H, Christiansen CF, Johansen MB, Tønnesen E, Jespersen B, Sørensen HT. Five-year risk of end-stage renal disease among intensive care patients surviving dialysis-requiring acute kidney injury: a nationwide cohort study. Crit Care. 2013;17:R145.PubMedPubMedCentral Gammelager H, Christiansen CF, Johansen MB, Tønnesen E, Jespersen B, Sørensen HT. Five-year risk of end-stage renal disease among intensive care patients surviving dialysis-requiring acute kidney injury: a nationwide cohort study. Crit Care. 2013;17:R145.PubMedPubMedCentral
12.
go back to reference Go AS, Chertow GM, Fan D, McCulloch CE, Hsu C-Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.PubMed Go AS, Chertow GM, Fan D, McCulloch CE, Hsu C-Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.PubMed
13.
go back to reference Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol. 2006;17:2034–47.PubMed Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol. 2006;17:2034–47.PubMed
14.
go back to reference Nitsch D, Grams M, Sang Y, Black C, Cirillo M, Djurdjev O, et al. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. BMJ. 2013;346:f324.PubMedPubMedCentral Nitsch D, Grams M, Sang Y, Black C, Cirillo M, Djurdjev O, et al. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. BMJ. 2013;346:f324.PubMedPubMedCentral
15.
go back to reference Hallan SI, Matsushita K, Sang Y, Mahmoodi BK, Black C, Ishani A, et al. Age and association of kidney measures with mortality and end-stage renal disease. JAMA. 2012;308:2349–60.PubMedPubMedCentral Hallan SI, Matsushita K, Sang Y, Mahmoodi BK, Black C, Ishani A, et al. Age and association of kidney measures with mortality and end-stage renal disease. JAMA. 2012;308:2349–60.PubMedPubMedCentral
16.
go back to reference Pagels AA, Söderkvist BK, Medin C, Hylander B, Heiwe S. Health-related quality of life in different stages of chronic kidney disease and at initiation of dialysis treatment. Health Qual Life Outcomes. 2012;10:71.PubMedPubMedCentral Pagels AA, Söderkvist BK, Medin C, Hylander B, Heiwe S. Health-related quality of life in different stages of chronic kidney disease and at initiation of dialysis treatment. Health Qual Life Outcomes. 2012;10:71.PubMedPubMedCentral
17.
go back to reference Cruz MC, Andrade C, Urrutia M, Draibe S, Nogueira-Martins LA, de CC SR. Quality of life in patients with chronic kidney disease. Clinics (Sao Paulo). 2011;66:991–5. Cruz MC, Andrade C, Urrutia M, Draibe S, Nogueira-Martins LA, de CC SR. Quality of life in patients with chronic kidney disease. Clinics (Sao Paulo). 2011;66:991–5.
18.
go back to reference Alleyne G, Binagwaho A, Haines A, Jahan S, Nugent R, Rojhani A, et al. Embedding non-communicable diseases in the post-2015 development agenda. Lancet. 2013;381:566–74.PubMed Alleyne G, Binagwaho A, Haines A, Jahan S, Nugent R, Rojhani A, et al. Embedding non-communicable diseases in the post-2015 development agenda. Lancet. 2013;381:566–74.PubMed
19.
go back to reference Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80:1258–70.PubMed Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80:1258–70.PubMed
20.
go back to reference Emilsson L, Lindahl B, Köster M, Lambe M, Ludvigsson JF. Review of 103 Swedish healthcare quality registries. J Intern Med. 2015;277:94–136.PubMed Emilsson L, Lindahl B, Köster M, Lambe M, Ludvigsson JF. Review of 103 Swedish healthcare quality registries. J Intern Med. 2015;277:94–136.PubMed
21.
go back to reference Adami HO, Hernán MA. Learning how to improve healthcare delivery: the Swedish Quality Registers. J Intern Med. 2015;277:87–9.PubMed Adami HO, Hernán MA. Learning how to improve healthcare delivery: the Swedish Quality Registers. J Intern Med. 2015;277:87–9.PubMed
23.
go back to reference Lunde AS, Lundeborg S, Lettenstrom GS, Thygesen L, Huebner J. The person-number systems of Sweden, Norway, Denmark, and Israel. Vital Health Stat. 1980;2:1–59. Lunde AS, Lundeborg S, Lettenstrom GS, Thygesen L, Huebner J. The person-number systems of Sweden, Norway, Denmark, and Israel. Vital Health Stat. 1980;2:1–59.
24.
go back to reference Johansson LA, Björkenstam C, Westerling R. Unexplained differences between hospital and mortality data indicated mistakes in death certification: an investigation of 1,094 deaths in Sweden during 1995. J Clin Epidemiol. 2009;62:1202–9.PubMed Johansson LA, Björkenstam C, Westerling R. Unexplained differences between hospital and mortality data indicated mistakes in death certification: an investigation of 1,094 deaths in Sweden during 1995. J Clin Epidemiol. 2009;62:1202–9.PubMed
25.
go back to reference Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–83.PubMed Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–83.PubMed
26.
go back to reference Ludvigsson JF, Andersson E, Ekbom A, Feychting M, Kim J-L, Reuterwall C, et al. External review and validation of the Swedish national inpatient register. BMC Public Health. 2011;11:450.PubMedPubMedCentral Ludvigsson JF, Andersson E, Ekbom A, Feychting M, Kim J-L, Reuterwall C, et al. External review and validation of the Swedish national inpatient register. BMC Public Health. 2011;11:450.PubMedPubMedCentral
27.
go back to reference Serdén L, Lindqvist R, Rosén M. Benefits with well-educated medical secretaries. Improved coding in the patient registry following a course in classification and care documentation. Lakartidningen. 2005;102:1530. 1533–4, 1536–7.PubMed Serdén L, Lindqvist R, Rosén M. Benefits with well-educated medical secretaries. Improved coding in the patient registry following a course in classification and care documentation. Lakartidningen. 2005;102:1530. 1533–4, 1536–7.PubMed
28.
go back to reference Nyrén O, McLaughlin JK, Gridley G, Ekbom A, Johnell O, Fraumeni JF, et al. Cancer risk after hip replacement with metal implants: a population-based cohort study in Sweden. J Natl Cancer Inst. 1995;87:28–33.PubMed Nyrén O, McLaughlin JK, Gridley G, Ekbom A, Johnell O, Fraumeni JF, et al. Cancer risk after hip replacement with metal implants: a population-based cohort study in Sweden. J Natl Cancer Inst. 1995;87:28–33.PubMed
29.
go back to reference Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.PubMed Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.PubMed
30.
go back to reference Bell M, SWING, Granath F, Schön S, Ekbom A, Martling C-R. Continuous renal replacement therapy is associated with less chronic renal failure than intermittent haemodialysis after acute renal failure. Intensive Care Med. 2007;33:773–80.PubMed Bell M, SWING, Granath F, Schön S, Ekbom A, Martling C-R. Continuous renal replacement therapy is associated with less chronic renal failure than intermittent haemodialysis after acute renal failure. Intensive Care Med. 2007;33:773–80.PubMed
31.
go back to reference Nisula S, Kaukonen K-M, Vaara ST, Korhonen A-M, Poukkanen M, Karlsson S, et al. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med. 2013;39:420–8.PubMed Nisula S, Kaukonen K-M, Vaara ST, Korhonen A-M, Poukkanen M, Karlsson S, et al. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med. 2013;39:420–8.PubMed
32.
go back to reference Long TE, Sigurdsson MI, Indridason OS, Sigvaldason K, Sigurdsson GH. Epidemiology of acute kidney injury in a tertiary care university hospital according to the RIFLE criteria. Laeknabladid. 2013;99:499–503.PubMed Long TE, Sigurdsson MI, Indridason OS, Sigvaldason K, Sigurdsson GH. Epidemiology of acute kidney injury in a tertiary care university hospital according to the RIFLE criteria. Laeknabladid. 2013;99:499–503.PubMed
33.
go back to reference Schiffl H, Fischer R. Five-year outcomes of severe acute kidney injury requiring renal replacement therapy. Nephrol Dial Transplant. 2008;23:2235–41.PubMed Schiffl H, Fischer R. Five-year outcomes of severe acute kidney injury requiring renal replacement therapy. Nephrol Dial Transplant. 2008;23:2235–41.PubMed
34.
go back to reference Morgera S, Kraft AK, Siebert G, Luft FC, Neumayer H-H. Long-term outcomes in acute renal failure patients treated with continuous renal replacement therapies. Am J Kidney Dis. 2002;40:275–9.PubMed Morgera S, Kraft AK, Siebert G, Luft FC, Neumayer H-H. Long-term outcomes in acute renal failure patients treated with continuous renal replacement therapies. Am J Kidney Dis. 2002;40:275–9.PubMed
35.
go back to reference Luckraz H, Gravenor MB, George R, Taylor S, Williams A, Ashraf S, et al. Long and short-term outcomes in patients requiring continuous renal replacement therapy post cardiopulmonary bypass. Eur J Cardiothorac Surg. 2005;27:906–9.PubMed Luckraz H, Gravenor MB, George R, Taylor S, Williams A, Ashraf S, et al. Long and short-term outcomes in patients requiring continuous renal replacement therapy post cardiopulmonary bypass. Eur J Cardiothorac Surg. 2005;27:906–9.PubMed
36.
go back to reference Gallagher M, Cass A, Bellomo R, Finfer S, Gattas D, Lee J, et al. Long-term survival and dialysis dependency following acute kidney injury in intensive care: extended follow-up of a randomized controlled trial. PLoS Med. 2014;11, e1001601.PubMedPubMedCentral Gallagher M, Cass A, Bellomo R, Finfer S, Gattas D, Lee J, et al. Long-term survival and dialysis dependency following acute kidney injury in intensive care: extended follow-up of a randomized controlled trial. PLoS Med. 2014;11, e1001601.PubMedPubMedCentral
37.
go back to reference Vaara ST, Korhonen A-M, Kaukonen K-M, Nisula S, Inkinen O, Hoppu S, et al. Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit Care. 2012;16:R197.PubMedPubMedCentral Vaara ST, Korhonen A-M, Kaukonen K-M, Nisula S, Inkinen O, Hoppu S, et al. Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit Care. 2012;16:R197.PubMedPubMedCentral
38.
go back to reference Pannu N, James M, Hemmelgarn B, Klarenbach S. Association between AKI, recovery of renal function, and long-term outcomes after hospital discharge. Clin J Am Soc Nephrol. 2013;8:194–202.PubMed Pannu N, James M, Hemmelgarn B, Klarenbach S. Association between AKI, recovery of renal function, and long-term outcomes after hospital discharge. Clin J Am Soc Nephrol. 2013;8:194–202.PubMed
39.
go back to reference Liaño F, Tenorio MT, Rodríguez-Mendiola N, Ponte B. Acute kidney injury as a risk factor for chronic kidney diseases in disadvantaged populations. Clin Nephrol. 2010;74:S89–94.PubMed Liaño F, Tenorio MT, Rodríguez-Mendiola N, Ponte B. Acute kidney injury as a risk factor for chronic kidney diseases in disadvantaged populations. Clin Nephrol. 2010;74:S89–94.PubMed
40.
go back to reference Bucaloiu ID, Kirchner HL, Norfolk ER, Hartle JE, Perkins RM. Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury. Kidney Int. 2012;81:477–85.PubMed Bucaloiu ID, Kirchner HL, Norfolk ER, Hartle JE, Perkins RM. Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury. Kidney Int. 2012;81:477–85.PubMed
41.
go back to reference Amdur RL, Chawla LS, Amodeo S, Kimmel PL, Palant CE. Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int. 2009;76:1089–97.PubMed Amdur RL, Chawla LS, Amodeo S, Kimmel PL, Palant CE. Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int. 2009;76:1089–97.PubMed
42.
go back to reference Siew ED, Peterson JF, Eden SK, Hung AM, Speroff T, Ikizler TA, et al. Outpatient nephrology referral rates after acute kidney injury. J Am Soc Nephrol. 2012;23:305–12.PubMedPubMedCentral Siew ED, Peterson JF, Eden SK, Hung AM, Speroff T, Ikizler TA, et al. Outpatient nephrology referral rates after acute kidney injury. J Am Soc Nephrol. 2012;23:305–12.PubMedPubMedCentral
43.
go back to reference Harel Z, Wald R, Bargman JM, Mamdani M, Etchells E, Garg AX, et al. Nephrologist follow-up improves all-cause mortality of severe acute kidney injury survivors. Kidney Int. 2013;83:901–8.PubMed Harel Z, Wald R, Bargman JM, Mamdani M, Etchells E, Garg AX, et al. Nephrologist follow-up improves all-cause mortality of severe acute kidney injury survivors. Kidney Int. 2013;83:901–8.PubMed
Metadata
Title
Evolution of chronic renal impairment and long-term mortality after de novo acute kidney injury in the critically ill; a Swedish multi-centre cohort study
Authors
Claire Rimes-Stigare
Paolo Frumento
Matteo Bottai
Johan Mårtensson
Claes-Roland Martling
Sten M Walther
Göran Karlström
Max Bell
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2015
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-015-0920-y

Other articles of this Issue 1/2015

Critical Care 1/2015 Go to the issue