Skip to main content
Top
Published in: Critical Care 1/2015

Open Access 01-12-2015 | Research

Platelet mitochondrial dysfunction in critically ill patients: comparison between sepsis and cardiogenic shock

Authors: Alessandro Protti, Francesco Fortunato, Andrea Artoni, Anna Lecchi, Giovanna Motta, Giovanni Mistraletti, Cristina Novembrino, Giacomo Pietro Comi, Luciano Gattinoni

Published in: Critical Care | Issue 1/2015

Login to get access

Abstract

Introduction

Platelet mitochondrial respiratory chain enzymes (that produce energy) are variably inhibited during human sepsis. Whether these changes occur even during other acute critical illness or are associated with impaired platelet aggregation and secretion (that consume energy) is not known. The aims of this study were firstly to compare platelet mitochondrial respiratory chain enzymes activity between patients with sepsis and those with cardiogenic shock, and secondly to study the relationship between platelet mitochondrial respiratory chain enzymes activity and platelet responsiveness to (exogenous) agonists in patients with sepsis.

Methods

This was a prospective, observational, case–control study. Platelets were isolated from venous blood of 16 patients with severe sepsis or septic shock (free from antiplatelet drugs) and 16 others with cardiogenic shock, within 48 hours from admission to Intensive Care. Platelet mitochondrial respiratory chain enzymes activity was measured with spectrophotometry and expressed relative to citrate synthase activity, a marker of mitochondrial density. Platelet aggregation and secretion in response to adenosine di-phosphate (ADP), collagen, U46619 and thrombin receptor activating peptide were measured with lumiaggregometry only in patients with sepsis. In total, 16 healthy volunteers acted as controls for both spectrophotometry and lumiaggregometry.

Results

Platelets of patients with sepsis or cardiogenic shock similarly had lower mitochondrial nicotinamide adenine dinucleotide dehydrogenase (NADH) (P < 0.001), complex I (P = 0.006), complex I and III (P < 0.001) and complex IV (P < 0.001) activity than those of controls. Platelets of patients with sepsis were generally hypo-responsive to exogenous agonists, both in terms of maximal aggregation (P < 0.001) and secretion (P < 0.05). Lower mitochondrial NADH (R2 0.36; P < 0.001), complex I (R2 0.38; P < 0.001), complex I and III (R2 0.27; P = 0.002) and complex IV (R2 0.43; P < 0.001) activity was associated with lower first wave of aggregation with ADP.

Conclusions

Several platelet mitochondrial respiratory chain enzymes are similarly inhibited during human sepsis and cardiogenic shock. In patients with sepsis, mitochondrial dysfunction is associated with general platelet hypo-responsiveness to exogenous agonists.

Trial registration

ClinicalTrials.gov NCT00541827. Registered 8 October 2007.
Literature
1.
go back to reference Siekevitz P. Powerhouse of the cell. Sci Am. 1957;197:131–40. Siekevitz P. Powerhouse of the cell. Sci Am. 1957;197:131–40.
2.
go back to reference Singer M, De Santis V, Vitale D, Jeffcoate W. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet. 2004;364:545–8.PubMed Singer M, De Santis V, Vitale D, Jeffcoate W. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet. 2004;364:545–8.PubMed
3.
go back to reference Protti A, Singer M. Strategies to modulate cellular energetic metabolism during sepsis. Novartis Found Symp. 2007;280:7–16.PubMed Protti A, Singer M. Strategies to modulate cellular energetic metabolism during sepsis. Novartis Found Symp. 2007;280:7–16.PubMed
4.
go back to reference Nicholls DG, Ferguson SJ. Bioenergetics. London: Academic; 2002. Nicholls DG, Ferguson SJ. Bioenergetics. London: Academic; 2002.
5.
go back to reference Protti A, Fortunato F, Monti M, Vecchio S, Gatti S, Comi GP, et al. Metformin overdose, but not lactic acidosis per se, inhibits oxygen consumption in pigs. Crit Care. 2012;16:R75.PubMedPubMedCentral Protti A, Fortunato F, Monti M, Vecchio S, Gatti S, Comi GP, et al. Metformin overdose, but not lactic acidosis per se, inhibits oxygen consumption in pigs. Crit Care. 2012;16:R75.PubMedPubMedCentral
6.
go back to reference Protti A, Lecchi A, Fortunato F, Artoni A, Greppi N, Vecchio S, et al. Metformin overdose causes platelet mitochondrial dysfunction in humans. Crit Care. 2012;16:R180.PubMedPubMedCentral Protti A, Lecchi A, Fortunato F, Artoni A, Greppi N, Vecchio S, et al. Metformin overdose causes platelet mitochondrial dysfunction in humans. Crit Care. 2012;16:R180.PubMedPubMedCentral
7.
go back to reference Protti A, Fortunato F, Caspani ML, Pluderi M, Lucchini V, Grimoldi N, et al. Mitochondrial changes in platelets are not related to those in skeletal muscle during human septic shock. PLoS One. 2014;9:e96205.PubMedPubMedCentral Protti A, Fortunato F, Caspani ML, Pluderi M, Lucchini V, Grimoldi N, et al. Mitochondrial changes in platelets are not related to those in skeletal muscle during human septic shock. PLoS One. 2014;9:e96205.PubMedPubMedCentral
8.
go back to reference Lorente L, Martín MM, López-Gallardo E, Iceta R, Blanquer J, Solé-Violán J, et al. Higher platelet cytochrome oxidase specific activity in surviving than in non-surviving septic patients. Crit Care. 2014;18:R136.PubMedPubMedCentral Lorente L, Martín MM, López-Gallardo E, Iceta R, Blanquer J, Solé-Violán J, et al. Higher platelet cytochrome oxidase specific activity in surviving than in non-surviving septic patients. Crit Care. 2014;18:R136.PubMedPubMedCentral
9.
go back to reference Guppy M, Abas L, Neylon C, Whisson ME, Whitham S, Pethick DW, et al. Fuel choices by human platelets in human plasma. Eur J Biochem. 1997;244:161–7.PubMed Guppy M, Abas L, Neylon C, Whisson ME, Whitham S, Pethick DW, et al. Fuel choices by human platelets in human plasma. Eur J Biochem. 1997;244:161–7.PubMed
10.
go back to reference Daniel JL, Molish IR, Holmsen H. Radioactive labeling of the adenine nucleotide pool of cells as a method to distinguish among intracellular compartments. Studies on human platelets. Biochim Biophys Acta. 1980;632:444–53.PubMed Daniel JL, Molish IR, Holmsen H. Radioactive labeling of the adenine nucleotide pool of cells as a method to distinguish among intracellular compartments. Studies on human platelets. Biochim Biophys Acta. 1980;632:444–53.PubMed
11.
go back to reference Akkerman JW, Holmsen H. Interrelationships among platelet responses: studies on the burst in proton liberation, lactate production, and oxygen uptake during platelet aggregation and Ca2+ secretion. Blood. 1981;57:956–66.PubMed Akkerman JW, Holmsen H. Interrelationships among platelet responses: studies on the burst in proton liberation, lactate production, and oxygen uptake during platelet aggregation and Ca2+ secretion. Blood. 1981;57:956–66.PubMed
12.
go back to reference Verhoeven AJ, Mommersteeg ME, Akkerman JW. Quantification of energy consumption in platelets during thrombin-induced aggregation and secretion. Tight coupling between platelet responses and the increment in energy consumption. Biochem J. 1984;221:777–87.PubMedPubMedCentral Verhoeven AJ, Mommersteeg ME, Akkerman JW. Quantification of energy consumption in platelets during thrombin-induced aggregation and secretion. Tight coupling between platelet responses and the increment in energy consumption. Biochem J. 1984;221:777–87.PubMedPubMedCentral
13.
go back to reference Mills DC. Changes in the adenylate energy charge in human blood platelets induced by adenosine diphosphate. Nat New Biol. 1973;243:220–2.PubMed Mills DC. Changes in the adenylate energy charge in human blood platelets induced by adenosine diphosphate. Nat New Biol. 1973;243:220–2.PubMed
14.
go back to reference Holmsen H, Setkowsky CA, Day HJ. Effects of antimycin and 2-deoxyglucose on adenine nucleotides in human platelets. Role of metabolic adenosine triphosphate in primary aggregation, secondary aggregation and shape change of platelets. Biochem J. 1974;144:385–96.PubMedPubMedCentral Holmsen H, Setkowsky CA, Day HJ. Effects of antimycin and 2-deoxyglucose on adenine nucleotides in human platelets. Role of metabolic adenosine triphosphate in primary aggregation, secondary aggregation and shape change of platelets. Biochem J. 1974;144:385–96.PubMedPubMedCentral
15.
go back to reference Holmsen H, Robkin L, Day HJ. Effects of antimycin A and 2-deoxyglucose on secretion in human platelets. Differential inhibition of the secretion of acid hydrolases and adenite nucleotides. Biochem J. 1979;182:413–9.PubMedPubMedCentral Holmsen H, Robkin L, Day HJ. Effects of antimycin A and 2-deoxyglucose on secretion in human platelets. Differential inhibition of the secretion of acid hydrolases and adenite nucleotides. Biochem J. 1979;182:413–9.PubMedPubMedCentral
16.
go back to reference Tomasiak M, Stelmach H, Rusak T, Wysocka J. Nitric oxide and platelet energy metabolism. Acta Biochim Pol. 2004;51:789–803.PubMed Tomasiak M, Stelmach H, Rusak T, Wysocka J. Nitric oxide and platelet energy metabolism. Acta Biochim Pol. 2004;51:789–803.PubMed
17.
go back to reference Rusak T, Tomasiak M, Ciborowski M. Peroxynitrite can affect platelet responses by inhibiting energy production. Acta Biochim Pol. 2006;53:769–76.PubMed Rusak T, Tomasiak M, Ciborowski M. Peroxynitrite can affect platelet responses by inhibiting energy production. Acta Biochim Pol. 2006;53:769–76.PubMed
18.
go back to reference Barile CJ, Herrmann PC, Tyvoll DA, Collman JP, Decreau RA, Bull BS. Inhibiting platelet-stimulated blood coagulation by inhibition of mitochondrial respiration. Proc Natl Acad Sci U S A. 2012;109:2539–43.PubMedPubMedCentral Barile CJ, Herrmann PC, Tyvoll DA, Collman JP, Decreau RA, Bull BS. Inhibiting platelet-stimulated blood coagulation by inhibition of mitochondrial respiration. Proc Natl Acad Sci U S A. 2012;109:2539–43.PubMedPubMedCentral
19.
go back to reference Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–55.PubMed Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–55.PubMed
20.
go back to reference Hasdai D, Topol EJ, Califf RM, Berger PB, Holmes Jr DR. Cardiogenic shock complicating acute coronary syndromes. Lancet. 2000;356:749–56.PubMed Hasdai D, Topol EJ, Califf RM, Berger PB, Holmes Jr DR. Cardiogenic shock complicating acute coronary syndromes. Lancet. 2000;356:749–56.PubMed
21.
go back to reference Cattaneo M. Light transmission aggregometry and ATP release for the diagnostic assessment of platelet function. Semin Thromb Hemost. 2009;35:158–67.PubMed Cattaneo M. Light transmission aggregometry and ATP release for the diagnostic assessment of platelet function. Semin Thromb Hemost. 2009;35:158–67.PubMed
22.
go back to reference Cattaneo M, Lecchi A, Lombardi R, Gachet C, Zighetti ML. Platelets from a patient heterozygous for the defect of P2CYC receptors for ADP have a secretion defect despite normal thromboxane A2 production and normal granule stores: further evidence that some cases of platelet ‘primary secretion defect’ are heterozygous for a defect of P2CYC receptors. Arterioscler Thromb Vasc Biol. 2000;20:E101–6.PubMed Cattaneo M, Lecchi A, Lombardi R, Gachet C, Zighetti ML. Platelets from a patient heterozygous for the defect of P2CYC receptors for ADP have a secretion defect despite normal thromboxane A2 production and normal granule stores: further evidence that some cases of platelet ‘primary secretion defect’ are heterozygous for a defect of P2CYC receptors. Arterioscler Thromb Vasc Biol. 2000;20:E101–6.PubMed
23.
go back to reference Boulos M, Astiz ME, Barua RS, Osman M. Impaired mitochondrial function induced by serum from septic shock patients is attenuated by inhibition of nitric oxide synthase and poly(ADP-ribose) synthase. Crit Care Med. 2003;31:353–8.PubMed Boulos M, Astiz ME, Barua RS, Osman M. Impaired mitochondrial function induced by serum from septic shock patients is attenuated by inhibition of nitric oxide synthase and poly(ADP-ribose) synthase. Crit Care Med. 2003;31:353–8.PubMed
24.
go back to reference Belikova I, Lukaszewicz AC, Faivre V, Damoisel C, Singer M, Payen D. Oxygen consumption of human peripheral blood mononuclear cells in severe human sepsis. Crit Care Med. 2007;35:2702–8.PubMed Belikova I, Lukaszewicz AC, Faivre V, Damoisel C, Singer M, Payen D. Oxygen consumption of human peripheral blood mononuclear cells in severe human sepsis. Crit Care Med. 2007;35:2702–8.PubMed
25.
go back to reference Garrabou G, Morén C, López S, Tobías E, Cardellach F, Miró O, et al. The effects of sepsis on mitochondria. J Infect Dis. 2012;205:392–400.PubMed Garrabou G, Morén C, López S, Tobías E, Cardellach F, Miró O, et al. The effects of sepsis on mitochondria. J Infect Dis. 2012;205:392–400.PubMed
26.
go back to reference Sjövall F, Morota S, Asander Frostner E, Hansson MJ, Elmér E. Cytokine and nitric oxide levels in patients with sepsis – temporal evolvement and relation to platelet mitochondrial respiratory function. PLoS One. 2014;9:e97673.PubMedPubMedCentral Sjövall F, Morota S, Asander Frostner E, Hansson MJ, Elmér E. Cytokine and nitric oxide levels in patients with sepsis – temporal evolvement and relation to platelet mitochondrial respiratory function. PLoS One. 2014;9:e97673.PubMedPubMedCentral
27.
go back to reference Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.PubMedPubMedCentral Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.PubMedPubMedCentral
28.
go back to reference Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208:2581–90.PubMedPubMedCentral Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208:2581–90.PubMedPubMedCentral
29.
go back to reference Adrie C, Adib-Conquy M, Laurent I, Monchi M, Vinsonneau C, Fitting C, et al. Successful cardiopulmonary resuscitation after cardiac arrest as a ‘sepsis-like’ syndrome. Circulation. 2002;106:562–8.PubMed Adrie C, Adib-Conquy M, Laurent I, Monchi M, Vinsonneau C, Fitting C, et al. Successful cardiopulmonary resuscitation after cardiac arrest as a ‘sepsis-like’ syndrome. Circulation. 2002;106:562–8.PubMed
30.
go back to reference Wallace KB, Starkov AA. Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicol. 2000;40:353–88.PubMed Wallace KB, Starkov AA. Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicol. 2000;40:353–88.PubMed
31.
go back to reference Barnhill AE, Brewer MT, Carlson SA. Adverse effects of antimicrobials via predictable or idiosyncratic inhibition of host mitochondrial components. Antimicrob Agents Chemother. 2012;56:4046–51.PubMedPubMedCentral Barnhill AE, Brewer MT, Carlson SA. Adverse effects of antimicrobials via predictable or idiosyncratic inhibition of host mitochondrial components. Antimicrob Agents Chemother. 2012;56:4046–51.PubMedPubMedCentral
32.
go back to reference Huet O, Dupic L, Batteux F, Matar C, Conti M, Chereau C, et al. Post-resuscitation syndrome: potential role of hydroxyl radical-induced endothelial cell damage. Crit Care Med. 2011;39:1712–20.PubMed Huet O, Dupic L, Batteux F, Matar C, Conti M, Chereau C, et al. Post-resuscitation syndrome: potential role of hydroxyl radical-induced endothelial cell damage. Crit Care Med. 2011;39:1712–20.PubMed
33.
go back to reference Penniall R. The effects of salicylic acid on the respiratory activity of mitochondria. Biochim Biophys Acta. 1958;30:247–51.PubMed Penniall R. The effects of salicylic acid on the respiratory activity of mitochondria. Biochim Biophys Acta. 1958;30:247–51.PubMed
34.
go back to reference Cowan DH, Bowman LS, Fratianne RB, Ahmed F. Platelet aggregation as a sign of septicemia in thermal injury. A prospective study. JAMA. 1976;235:1230–4.PubMed Cowan DH, Bowman LS, Fratianne RB, Ahmed F. Platelet aggregation as a sign of septicemia in thermal injury. A prospective study. JAMA. 1976;235:1230–4.PubMed
35.
go back to reference Lundahl TH, Petersson J, Fagerberg IH, Berg S, Lindahl TL. Impaired platelet function correlates with multi-organ dysfunction. A study of patients with sepsis. Platelets. 1998;9:223–5.PubMed Lundahl TH, Petersson J, Fagerberg IH, Berg S, Lindahl TL. Impaired platelet function correlates with multi-organ dysfunction. A study of patients with sepsis. Platelets. 1998;9:223–5.PubMed
36.
go back to reference Yaguchi A, Lobo FL, Vincent JL, Pradier O. Platelet function in sepsis. J Thromb Haemost. 2004;2:2096–102.PubMed Yaguchi A, Lobo FL, Vincent JL, Pradier O. Platelet function in sepsis. J Thromb Haemost. 2004;2:2096–102.PubMed
37.
go back to reference Adamzik M, Görlinger K, Peters J, Hartmann M. Whole blood impedance aggregometry as a biomarker for the diagnosis and prognosis of severe sepsis. Crit Care. 2012;16:R204.PubMedPubMedCentral Adamzik M, Görlinger K, Peters J, Hartmann M. Whole blood impedance aggregometry as a biomarker for the diagnosis and prognosis of severe sepsis. Crit Care. 2012;16:R204.PubMedPubMedCentral
38.
go back to reference Pareti FI, Capitanio A, Mannucci L, Ponticelli C, Mannucci PM. Acquired dysfunction due to the circulation of ‘exhausted’ platelets. Am J Med. 1980;69:235–40.PubMed Pareti FI, Capitanio A, Mannucci L, Ponticelli C, Mannucci PM. Acquired dysfunction due to the circulation of ‘exhausted’ platelets. Am J Med. 1980;69:235–40.PubMed
39.
go back to reference Pareti FI, Capitanio A, Mannucci PM. Acquired storage pool disease in platelets during disseminated intravascular coagulation. Blood. 1976;48:511–5.PubMed Pareti FI, Capitanio A, Mannucci PM. Acquired storage pool disease in platelets during disseminated intravascular coagulation. Blood. 1976;48:511–5.PubMed
40.
go back to reference Weiss HJ. Platelet physiology and abnormalities of platelet function (second of two parts). N Engl J Med. 1975;293:580–8.PubMed Weiss HJ. Platelet physiology and abnormalities of platelet function (second of two parts). N Engl J Med. 1975;293:580–8.PubMed
41.
go back to reference Pareti FI, Day HJ, Mills DC. Nucleotide and serotonin metabolism in platelets with defective secondary aggregation. Blood. 1974;44:789–800.PubMed Pareti FI, Day HJ, Mills DC. Nucleotide and serotonin metabolism in platelets with defective secondary aggregation. Blood. 1974;44:789–800.PubMed
42.
go back to reference Verhoeven AJ, Mommersteeg ME, Akkerman JW. Comparative studies on the energetics of platelet responses induced by different agonists. Biochem J. 1986;236:879–87.PubMedPubMedCentral Verhoeven AJ, Mommersteeg ME, Akkerman JW. Comparative studies on the energetics of platelet responses induced by different agonists. Biochem J. 1986;236:879–87.PubMedPubMedCentral
43.
go back to reference Stibbe J, Holmsen H. Effects of sodium azide on platelet function. Thromb Haemost. 1977;38:1042–53.PubMed Stibbe J, Holmsen H. Effects of sodium azide on platelet function. Thromb Haemost. 1977;38:1042–53.PubMed
44.
go back to reference Chandel NS, Budinger GRS, Choe SH, Schumacker PT. Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J Biol Chem. 1997;272:18808–16.PubMed Chandel NS, Budinger GRS, Choe SH, Schumacker PT. Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J Biol Chem. 1997;272:18808–16.PubMed
45.
go back to reference Boudreau LH, Duchez AC, Cloutier N, Soulet D, Martin N, Bollinger J, et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014;124:2173–83.PubMedPubMedCentral Boudreau LH, Duchez AC, Cloutier N, Soulet D, Martin N, Bollinger J, et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014;124:2173–83.PubMedPubMedCentral
Metadata
Title
Platelet mitochondrial dysfunction in critically ill patients: comparison between sepsis and cardiogenic shock
Authors
Alessandro Protti
Francesco Fortunato
Andrea Artoni
Anna Lecchi
Giovanna Motta
Giovanni Mistraletti
Cristina Novembrino
Giacomo Pietro Comi
Luciano Gattinoni
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2015
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-015-0762-7

Other articles of this Issue 1/2015

Critical Care 1/2015 Go to the issue