Skip to main content
Top
Published in: Italian Journal of Pediatrics 1/2018

Open Access 01-12-2018 | Research

Genomics of neonatal sepsis: has-miR-150 targeting BCL11B functions in disease progression

Authors: Li Huang, Lixing Qiao, Huan Zhu, Li Jiang, Liping Yin

Published in: Italian Journal of Pediatrics | Issue 1/2018

Login to get access

Abstract

Background

Neonatal sepsis is an inflammatory systemic syndrome, which is a major cause of morbidity and mortality in premature infants. We analyzed the expression profile data of E-MTAB-4785 to reveal the pathogenesis of the disease.

Methods

The expression profile dataset E-MTAB-4785, which contained 17 sepsis samples and 19 normal samples, was obtained from the ArrayExpress database. The differentially expressed genes (DEGs) were analyzed by the Bayesian testing method in limma package. Based on the DAVID online tool, enrichment analysis was conducted for the DEGs. Using STRING database and Cytoscape software, protein-protein interaction (PPI) network and module analyses were performed. Besides, transcription factor (TF)-DEG regulatory network was also constructed by Cytoscape software. Additionally, miRNA-DEG pairs were searched using miR2Disease and miRWalk 2.0 databases, followed by miRNA-DEG regulatory network was visualized by Cytoscape software.

Results

A total of 275 DEGs were identified from the sepsis samples in comparison to normal samples. TSPO, MAPK14, and ZAP70 were the hub nodes in the PPI network. Pathway enrichment analysis indicated that CEBPB and MAPK14 were enriched in TNF signaling pathway. Moreover, CEBPB and has-miR-150 might function in neonatal sepsis separately through targeting MAPK14 and BCL11B in the regulatory networks. These genes and miRNA might be novel targets for the clinical treatment of neonatal sepsis.

Conclusion

TSPO, ZAP70, CEBPB targeting MAPK14, has-miR-150 targeting BCL11B might affect the pathogenesis of neonatal sepsis. However, their roles in neonatal sepsis still needed to be confirmed by further experimental researches.
Literature
1.
2.
go back to reference Verma P, Berwal P, Nagaraj N, Swami S, Jivaji P, Narayan S. Neonatal sepsis: epidemiology, clinical spectrum, recent antimicrobial agents and their antibiotic susceptibility pattern. Int J Contemp Pediatr. 2015;2(3):176–80.CrossRef Verma P, Berwal P, Nagaraj N, Swami S, Jivaji P, Narayan S. Neonatal sepsis: epidemiology, clinical spectrum, recent antimicrobial agents and their antibiotic susceptibility pattern. Int J Contemp Pediatr. 2015;2(3):176–80.CrossRef
3.
go back to reference Polin RA. Management of neonates with suspected or proven early-onset bacterial sepsis. Pediatrics. 2012;129(5):1006–15.CrossRef Polin RA. Management of neonates with suspected or proven early-onset bacterial sepsis. Pediatrics. 2012;129(5):1006–15.CrossRef
4.
go back to reference Wynn JL, Wilson CS, Hawiger J, Scumpia PO, Marshall AF, Liu JH, et al. Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18. Proc Natl Acad Sci U S A. 2016;113(19):E2627–35.CrossRef Wynn JL, Wilson CS, Hawiger J, Scumpia PO, Marshall AF, Liu JH, et al. Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18. Proc Natl Acad Sci U S A. 2016;113(19):E2627–35.CrossRef
5.
go back to reference Schlapbach LJ. Pancreatic stone protein as a novel marker for neonatal sepsis. Intensive Care Med. 2013;39(4):754–63.CrossRef Schlapbach LJ. Pancreatic stone protein as a novel marker for neonatal sepsis. Intensive Care Med. 2013;39(4):754–63.CrossRef
6.
go back to reference Jiř Ž, Kýr M, Vavřina M, Fedora M. Pancreatic stone protein – a possible biomarker of multiorgan failure and mortality in children sepsis. Cytokine. 2014;66(2):106–11.CrossRef Jiř Ž, Kýr M, Vavřina M, Fedora M. Pancreatic stone protein – a possible biomarker of multiorgan failure and mortality in children sepsis. Cytokine. 2014;66(2):106–11.CrossRef
7.
go back to reference Kipfmueller F, Schneider J, Prusseit J, Dimitriou I, Zur B, Franz AR, et al. Role of Neutrophil CD64 Index as a Screening Marker for Late-Onset Sepsis in Very Low Birth Weight Infants. Plos One. 2015;10(4):e0124634.CrossRef Kipfmueller F, Schneider J, Prusseit J, Dimitriou I, Zur B, Franz AR, et al. Role of Neutrophil CD64 Index as a Screening Marker for Late-Onset Sepsis in Very Low Birth Weight Infants. Plos One. 2015;10(4):e0124634.CrossRef
8.
go back to reference Dimoula A. Serial determinations of neutrophil CD64 expression for the diagnosis and monitoring of sepsis in critically ill patients. Clin Infect Dis. 2014;58(6):820–9.CrossRef Dimoula A. Serial determinations of neutrophil CD64 expression for the diagnosis and monitoring of sepsis in critically ill patients. Clin Infect Dis. 2014;58(6):820–9.CrossRef
9.
go back to reference Wang X, Wang X, Liu X, Wang X, Xu J, Hou S, et al. miR-15a/16 are upreuglated in the serum of neonatal sepsis patients and inhibit the LPS-induced inflammatory pathway. Int J Clin Exp Med. 2015;8(4):5683–90.PubMedPubMedCentral Wang X, Wang X, Liu X, Wang X, Xu J, Hou S, et al. miR-15a/16 are upreuglated in the serum of neonatal sepsis patients and inhibit the LPS-induced inflammatory pathway. Int J Clin Exp Med. 2015;8(4):5683–90.PubMedPubMedCentral
10.
go back to reference Cernada M, Serna E, Bauerl C, Collado MC, Pérezmartínez G, Vento M. Genome-wide expression profiles in very low birth weight infants with neonatal sepsis. Pediatrics. 2014;133(5):1203–11.CrossRef Cernada M, Serna E, Bauerl C, Collado MC, Pérezmartínez G, Vento M. Genome-wide expression profiles in very low birth weight infants with neonatal sepsis. Pediatrics. 2014;133(5):1203–11.CrossRef
11.
go back to reference Töllner U. Early diagnosis of septicemia in the newborn. Eur J Pediatr. 1982;138(4):331–7.CrossRef Töllner U. Early diagnosis of septicemia in the newborn. Eur J Pediatr. 1982;138(4):331–7.CrossRef
12.
go back to reference Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD neonatal research network. Pediatrics. 2002;110(1):285–91.CrossRef Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD neonatal research network. Pediatrics. 2002;110(1):285–91.CrossRef
13.
go back to reference Sastre JL, Colomer BF, Cotallo GDC. Neonatal Sepsis of vertical Transmision. An epidemiological study from the “Grupo de Hospitales Castrillo”. J Perinat Med. 2000;28(4):309–15.CrossRef Sastre JL, Colomer BF, Cotallo GDC. Neonatal Sepsis of vertical Transmision. An epidemiological study from the “Grupo de Hospitales Castrillo”. J Perinat Med. 2000;28(4):309–15.CrossRef
14.
go back to reference Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26(19):2363–7.CrossRef Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26(19):2363–7.CrossRef
15.
go back to reference Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003;31(4):15.CrossRef Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003;31(4):15.CrossRef
16.
go back to reference Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2013;10(5):568–71. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2013;10(5):568–71.
17.
go back to reference Ritchie ME. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015;43(7):e47.CrossRef Ritchie ME. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015;43(7):e47.CrossRef
18.
go back to reference Westfall PH. The Benjamini-Hochberg method with infinitely many contrasts in linear models. Biometrika. 2008;95(3):709–19. Westfall PH. The Benjamini-Hochberg method with infinitely many contrasts in linear models. Biometrika. 2008;95(3):709–19.
19.
go back to reference Consortium GO. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43(D1):D1049–56.CrossRef Consortium GO. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43(D1):D1049–56.CrossRef
20.
go back to reference Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2015;44(D1):D457–62.CrossRef Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2015;44(D1):D457–62.CrossRef
21.
go back to reference Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. David bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35(Web Server):W169–W175. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. David bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35(Web Server):W169–W175.
22.
go back to reference Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huertacepas J, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):447–52.CrossRef Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huertacepas J, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):447–52.CrossRef
23.
go back to reference Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol. 2011;696(696):291–303.CrossRef Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol. 2011;696(696):291–303.CrossRef
24.
go back to reference Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Bio Systems. 2015;127:67–72.CrossRef Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Bio Systems. 2015;127:67–72.CrossRef
25.
go back to reference He X, Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genet. 2006;2(6):826–34.CrossRef He X, Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genet. 2006;2(6):826–34.CrossRef
26.
go back to reference Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinf. 2003;4(1):2.CrossRef Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinf. 2003;4(1):2.CrossRef
27.
go back to reference Rosenbloom KR, Dreszer TR, Pheasant M, Barber GP, Meyer LR, Pohl A, et al. ENCODE whole-genome data in the UCSC genome browser. Nucleic Acids Res. 2010;38(Database issue):D620–5.CrossRef Rosenbloom KR, Dreszer TR, Pheasant M, Barber GP, Meyer LR, Pohl A, et al. ENCODE whole-genome data in the UCSC genome browser. Nucleic Acids Res. 2010;38(Database issue):D620–5.CrossRef
28.
go back to reference Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009;37(Database issue):D98–104.CrossRef Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009;37(Database issue):D98–104.CrossRef
29.
go back to reference Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697.CrossRef Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697.CrossRef
30.
go back to reference Jean R, Bribes E, Knabe L, Fort-Petit A, Vachier I, Bourdin A. TSPO is a new anti-inflammatory target in the airway of COPD. Rev Mal Respir. 2015;32(3):320.CrossRef Jean R, Bribes E, Knabe L, Fort-Petit A, Vachier I, Bourdin A. TSPO is a new anti-inflammatory target in the airway of COPD. Rev Mal Respir. 2015;32(3):320.CrossRef
31.
go back to reference Santoro A, Mattace RG, Taliani S, Da PE, Simorini F, Costa B, et al. TSPO-ligands prevent oxidative damage and inflammatory response in C6 glioma cells by neurosteroid synthesis. Eur J Pharm Sci. 2016;88:124–31.CrossRef Santoro A, Mattace RG, Taliani S, Da PE, Simorini F, Costa B, et al. TSPO-ligands prevent oxidative damage and inflammatory response in C6 glioma cells by neurosteroid synthesis. Eur J Pharm Sci. 2016;88:124–31.CrossRef
32.
go back to reference Huang G, Wang Y, Vogel P, Kanneganti TD, Otsu K, Chi H. Signaling via the kinase p38α programs dendritic cells to drive TH17 differentiation and autoimmune inflammation. Nat Immunol. 2012;13(2):152–61.CrossRef Huang G, Wang Y, Vogel P, Kanneganti TD, Otsu K, Chi H. Signaling via the kinase p38α programs dendritic cells to drive TH17 differentiation and autoimmune inflammation. Nat Immunol. 2012;13(2):152–61.CrossRef
33.
go back to reference Schieven GL. The p38alpha kinase plays a central role in inflammation. Curr Top Med Chem. 2009;9(11):1038–48.CrossRef Schieven GL. The p38alpha kinase plays a central role in inflammation. Curr Top Med Chem. 2009;9(11):1038–48.CrossRef
34.
go back to reference O'Keefe SJ, Mudgett JS, Cupo S, Parsons JN, Chartrain NA, Fitzgerald C, et al. Chemical genetics define the roles of p38 and p38β in acute and chronic inflammation. J Biol Chem. 2007;282(48):34663–71.CrossRef O'Keefe SJ, Mudgett JS, Cupo S, Parsons JN, Chartrain NA, Fitzgerald C, et al. Chemical genetics define the roles of p38 and p38β in acute and chronic inflammation. J Biol Chem. 2007;282(48):34663–71.CrossRef
35.
go back to reference Picard C, Dogniaux S, Chemin K, Maciorowski Z, Lim A, Mazerolles F, et al. Hypomorphic mutation of ZAP70 in human results in a late onset immunodeficiency and no autoimmunity. Eur J Immunol. 2009;39(7):1966–76.CrossRef Picard C, Dogniaux S, Chemin K, Maciorowski Z, Lim A, Mazerolles F, et al. Hypomorphic mutation of ZAP70 in human results in a late onset immunodeficiency and no autoimmunity. Eur J Immunol. 2009;39(7):1966–76.CrossRef
36.
go back to reference Roifman CM, Dadi H, Somech R, Nahum A, Sharfe N. Characterization of ζ-associated protein, 70 kd (ZAP70)–deficient human lymphocytes. J Allergy Clin Immunol. 2010;126(6):1226–33.CrossRef Roifman CM, Dadi H, Somech R, Nahum A, Sharfe N. Characterization of ζ-associated protein, 70 kd (ZAP70)–deficient human lymphocytes. J Allergy Clin Immunol. 2010;126(6):1226–33.CrossRef
37.
go back to reference Wu J, Hu G, Lu Y, Zheng J, Chen J, Wang X, et al. Palmitic acid aggravates inflammation of pancreatic acinar cells by enhancing unfolded protein response induced CCAAT-enhancer-binding protein β–CCAAT-enhancer-binding protein α activation. Int J Biochem Cell Biol. 2016;79:181–93.CrossRef Wu J, Hu G, Lu Y, Zheng J, Chen J, Wang X, et al. Palmitic acid aggravates inflammation of pancreatic acinar cells by enhancing unfolded protein response induced CCAAT-enhancer-binding protein β–CCAAT-enhancer-binding protein α activation. Int J Biochem Cell Biol. 2016;79:181–93.CrossRef
38.
go back to reference Krieken SEVD, Popeijus HE, Mensink RP, Plat J. CCAAT/enhancer binding protein β in relation to ER stress, inflammation, and metabolic disturbances. Biomed Res Int. 2015;2015:324815.PubMedPubMedCentral Krieken SEVD, Popeijus HE, Mensink RP, Plat J. CCAAT/enhancer binding protein β in relation to ER stress, inflammation, and metabolic disturbances. Biomed Res Int. 2015;2015:324815.PubMedPubMedCentral
39.
go back to reference Vasilescu C, Rossi S, Shimizu M, Tudor S, Veronese A, Ferracin M, et al. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with Sepsis. PLoS One. 2009;4(10):286–96.CrossRef Vasilescu C, Rossi S, Shimizu M, Tudor S, Veronese A, Ferracin M, et al. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with Sepsis. PLoS One. 2009;4(10):286–96.CrossRef
40.
go back to reference Roderburg C, Luedde M, Cardenas DV, Vucur M, Scholten D, Frey N, et al. Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis. PLoS One. 2013;8(1):4926–31.CrossRef Roderburg C, Luedde M, Cardenas DV, Vucur M, Scholten D, Frey N, et al. Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis. PLoS One. 2013;8(1):4926–31.CrossRef
41.
go back to reference Califano D, Cho J, Uddin M, Lorentsen K, Qi Y, Bhandoola A, et al. Transcription factor Bcl11b controls identity and function of mature type 2 innate lymphoid cells. Immunity. 2015;43(2):354–68.CrossRef Califano D, Cho J, Uddin M, Lorentsen K, Qi Y, Bhandoola A, et al. Transcription factor Bcl11b controls identity and function of mature type 2 innate lymphoid cells. Immunity. 2015;43(2):354–68.CrossRef
42.
go back to reference Walker JA, Oliphant CJ, Englezakis A, Yu Y, Clare S, Rodewald HR, et al. Bcl11b is essential for group 2 innate lymphoid cell development. J Exp Med. 2015;212(6):875–82.CrossRef Walker JA, Oliphant CJ, Englezakis A, Yu Y, Clare S, Rodewald HR, et al. Bcl11b is essential for group 2 innate lymphoid cell development. J Exp Med. 2015;212(6):875–82.CrossRef
Metadata
Title
Genomics of neonatal sepsis: has-miR-150 targeting BCL11B functions in disease progression
Authors
Li Huang
Lixing Qiao
Huan Zhu
Li Jiang
Liping Yin
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Italian Journal of Pediatrics / Issue 1/2018
Electronic ISSN: 1824-7288
DOI
https://doi.org/10.1186/s13052-018-0575-9

Other articles of this Issue 1/2018

Italian Journal of Pediatrics 1/2018 Go to the issue