Skip to main content
Top
Published in: Italian Journal of Pediatrics 1/2016

Open Access 01-12-2016 | Research

Children with recurrent pneumonia and non-cystic fibrosis bronchiectasis

Authors: Maria Francesca Patria, Benedetta Longhi, Mara Lelii, Claudia Tagliabue, Marinella Lavelli, Carlotta Galeone, Nicola Principi, Susanna Esposito

Published in: Italian Journal of Pediatrics | Issue 1/2016

Login to get access

Abstract

Background

Recurrent pneumonia (RP) is one of the most frequent causes of pediatric non-cystic fibrosis (CF) bronchiectasis (BE) and a consequent accelerated decline in lung function. The aim of this study was to analyse the clinical records of children with RP in attempt to identify factors that may lead to an early suspicion of non-CF BE.

Methods

We recorded the demographic and clinical data, and lung function test results of children without CF attending our outpatient RP clinic between January 2009 to December 2013 who had undergone chest high-resolution computed tomography ≥8 weeks after an acute pneumonia episode and ≤6 months before enrolment.

Results

The study involved 42 patients with RP: 21 with and 21 without non-CF BE. The most frequent underlying diseases in both groups were chronic rhinosinusitis with post-nasal drip and recurrent wheezing (81 % and 71.4 % of those with, and 85.7 % and 71.4 % of those without BE). FEV1 and FEF25–75 values were significantly lower in the children with non-CF BE than in those without (77.9 ± 17.8 vs 96.8 ± 12.4, p = 0.004; 69.3 ± 25.6 vs 89.3 ± 21.9, p = 0.048). Bronchodilator responsiveness was observed in seven children with BE (33.3 %) and two without (9.5 %; p = 0.13).

Conclusions

Reduced FEV1 and FEF25–75 values seem associated with an increased risk of developing non-CF BE in children with RP. This suggests a need for further studies to confirm the diagnostic usefulness use of spirometry in such cases.
Literature
2.
go back to reference Kapur N, Karadag B. Differences and similarities in non-cystic fibrosis bronchiectasis between developing and affluent countries. Paediatr Respir Rev. 2011;12:91–6.CrossRefPubMed Kapur N, Karadag B. Differences and similarities in non-cystic fibrosis bronchiectasis between developing and affluent countries. Paediatr Respir Rev. 2011;12:91–6.CrossRefPubMed
3.
go back to reference Li AM, Sonnappa S, Lex C, Wong E, Zacharasiewicz A, Bush A, et al. Non-CF bronchiectasis: does knowing the aetiology lead to changes in management? Eur Respir J. 2005;26:8–14.CrossRefPubMed Li AM, Sonnappa S, Lex C, Wong E, Zacharasiewicz A, Bush A, et al. Non-CF bronchiectasis: does knowing the aetiology lead to changes in management? Eur Respir J. 2005;26:8–14.CrossRefPubMed
5.
go back to reference Santamaria F, Montella S, Pifferi M, Ragazzo V, De Stefano S, De Paulis N, et al. A descriptive study of non-cystic fibrosis bronchiectasis in a pediatric population from central and southern Italy. Respiration. 2009;77:160–5.CrossRefPubMed Santamaria F, Montella S, Pifferi M, Ragazzo V, De Stefano S, De Paulis N, et al. A descriptive study of non-cystic fibrosis bronchiectasis in a pediatric population from central and southern Italy. Respiration. 2009;77:160–5.CrossRefPubMed
6.
go back to reference Chang AB, Byrnes CA, Everard ML. Diagnosing and preventing chronic suppurative lung disease (CSLD) and bronchiectasis. Paediatr Respir Rev. 2011;12:97–103.CrossRefPubMed Chang AB, Byrnes CA, Everard ML. Diagnosing and preventing chronic suppurative lung disease (CSLD) and bronchiectasis. Paediatr Respir Rev. 2011;12:97–103.CrossRefPubMed
7.
go back to reference Gokdemir Y, Hamzah A, Erdem E, Cimsit C, Ersu R, Karakoc F, et al. Quality of life in children with non-cystic-fibrosis bronchiectasis. Respiration. 2014;88:46–51.CrossRefPubMed Gokdemir Y, Hamzah A, Erdem E, Cimsit C, Ersu R, Karakoc F, et al. Quality of life in children with non-cystic-fibrosis bronchiectasis. Respiration. 2014;88:46–51.CrossRefPubMed
8.
go back to reference Kapur N, Masters IB, Chang AB. Longitudinal growth and lung function in pediatric non-cystic fibrosis bronchiectasis: what influences lung function stability? Chest. 2010;138:158–64.CrossRefPubMed Kapur N, Masters IB, Chang AB. Longitudinal growth and lung function in pediatric non-cystic fibrosis bronchiectasis: what influences lung function stability? Chest. 2010;138:158–64.CrossRefPubMed
10.
go back to reference Owayed AF, Campbell DM, Wang EE. Underlying causes of recurrent pneumonia in children. Arch Pediatr Adolesc Med. 2000;154:190–4.CrossRefPubMed Owayed AF, Campbell DM, Wang EE. Underlying causes of recurrent pneumonia in children. Arch Pediatr Adolesc Med. 2000;154:190–4.CrossRefPubMed
11.
go back to reference Weigl JA, Bader HM, Everding A, Schmitt HJ. Population-based burden of pneumonia before school entry in Schleswig-Holstein, Germany. Eur J Pediatr. 2003;162:309–16.PubMed Weigl JA, Bader HM, Everding A, Schmitt HJ. Population-based burden of pneumonia before school entry in Schleswig-Holstein, Germany. Eur J Pediatr. 2003;162:309–16.PubMed
12.
go back to reference Patria F, Longhi B, Tagliabue C, Tenconi R, Ballista P, Ricciardi G, et al. Clinical profile of recurrent community-acquired pneumonia in children. BMC Pulm Med. 2013;13:60.PubMedCentralCrossRefPubMed Patria F, Longhi B, Tagliabue C, Tenconi R, Ballista P, Ricciardi G, et al. Clinical profile of recurrent community-acquired pneumonia in children. BMC Pulm Med. 2013;13:60.PubMedCentralCrossRefPubMed
13.
go back to reference Wald E. Recurrent and non-resolving pneumonia in children. Semin Respir Infect. 1993;8:846–58. Wald E. Recurrent and non-resolving pneumonia in children. Semin Respir Infect. 1993;8:846–58.
14.
go back to reference World Health Organization. Pneumonia Vaccine Trial Investigators’ Group. Standardization of interpretation of chest radiographs for the diagnosis of pneumonia in children. WHO/V&B/01.35. Geneva, Switzerland: World Health Organization; 2001. World Health Organization. Pneumonia Vaccine Trial Investigators’ Group. Standardization of interpretation of chest radiographs for the diagnosis of pneumonia in children. WHO/V&B/01.35. Geneva, Switzerland: World Health Organization; 2001.
15.
go back to reference Esposito S, Principi N. Rhinosinusitis management in pediatrics: an overview. Int J Immunopathol Pharmacol. 2010;23(1 Suppl):53–5.PubMed Esposito S, Principi N. Rhinosinusitis management in pediatrics: an overview. Int J Immunopathol Pharmacol. 2010;23(1 Suppl):53–5.PubMed
16.
go back to reference Edwards EA, Metcalfe R, Milne DG, Thompson J, Byrnes CA. Retrospective review of children presenting with non cystic fibrosis bronchiectasis: HRCT features and clinical relationships. Pediatr Pulmonol. 2003;36:87–93.CrossRefPubMed Edwards EA, Metcalfe R, Milne DG, Thompson J, Byrnes CA. Retrospective review of children presenting with non cystic fibrosis bronchiectasis: HRCT features and clinical relationships. Pediatr Pulmonol. 2003;36:87–93.CrossRefPubMed
17.
go back to reference Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38.CrossRefPubMed Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38.CrossRefPubMed
18.
go back to reference Hastan D, Fokkens WJ, Bachert C, Newson RB, Bislimovska J, Bockelbrink A, et al. Chronic rhinosinusitis in Europe–an underestimated disease. A GA2LEN study. Allergy. 2011;66:1216–23.CrossRefPubMed Hastan D, Fokkens WJ, Bachert C, Newson RB, Bislimovska J, Bockelbrink A, et al. Chronic rhinosinusitis in Europe–an underestimated disease. A GA2LEN study. Allergy. 2011;66:1216–23.CrossRefPubMed
19.
go back to reference Bachert C, Claeys SE, Tomassen P, Van Zele T, Zhang N. Rhinosinusitis and asthma: a link for asthma severity. Curr Allergy Asthma Rep. 2010;10:194–201.CrossRefPubMed Bachert C, Claeys SE, Tomassen P, Van Zele T, Zhang N. Rhinosinusitis and asthma: a link for asthma severity. Curr Allergy Asthma Rep. 2010;10:194–201.CrossRefPubMed
20.
go back to reference Gelardi M, Marchisio P, Caimmi D, Incorvaia C, Albertario G, Bianchini S, et al. Pathophysiology, favoring factors, and associated disorders in otorhinosinusology. Pediatr Allergy Immunol. 2012;23 Suppl 22:5–16.CrossRefPubMed Gelardi M, Marchisio P, Caimmi D, Incorvaia C, Albertario G, Bianchini S, et al. Pathophysiology, favoring factors, and associated disorders in otorhinosinusology. Pediatr Allergy Immunol. 2012;23 Suppl 22:5–16.CrossRefPubMed
21.
go back to reference Craven V, Everard ML. Protracted bacterial bronchitis: reinventing an old disease. Arch Dis Child. 2013;98:72–6.CrossRefPubMed Craven V, Everard ML. Protracted bacterial bronchitis: reinventing an old disease. Arch Dis Child. 2013;98:72–6.CrossRefPubMed
22.
go back to reference Horváth I, Loukides S, Wodehouse T, Csiszér E, Cole PJ, Kharitonov SA, et al. Comparison of exhaled and nasal nitric oxide and exhaled carbon monoxide levels in bronchiectatic patients with and without primary ciliary dyskinesia. Thorax. 2003;58:68–72.PubMedCentralCrossRefPubMed Horváth I, Loukides S, Wodehouse T, Csiszér E, Cole PJ, Kharitonov SA, et al. Comparison of exhaled and nasal nitric oxide and exhaled carbon monoxide levels in bronchiectatic patients with and without primary ciliary dyskinesia. Thorax. 2003;58:68–72.PubMedCentralCrossRefPubMed
23.
go back to reference Narang I, Ersu R, Wilson NM, Bush A. Nitric oxide in chronic airway inflammation in children: diagnostic use and pathophysiological significance. Thorax. 2002;57:586–9.PubMedCentralCrossRefPubMed Narang I, Ersu R, Wilson NM, Bush A. Nitric oxide in chronic airway inflammation in children: diagnostic use and pathophysiological significance. Thorax. 2002;57:586–9.PubMedCentralCrossRefPubMed
24.
go back to reference Regamey N, Ochs M, Hilliard TN, Mühlfeld C, Cornish N, Fleming L, et al. Increased airway smooth muscle mass in children with asthma, cystic fibrosis, and non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med. 2008;177:837–43.CrossRefPubMed Regamey N, Ochs M, Hilliard TN, Mühlfeld C, Cornish N, Fleming L, et al. Increased airway smooth muscle mass in children with asthma, cystic fibrosis, and non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med. 2008;177:837–43.CrossRefPubMed
25.
go back to reference Stanojevic S, Wade A, Cole TJ, Lum S, Custovic A, Silverman M, et al. Spirometry centile charts for young Caucasian children: the Asthma UK Collaborative Initiative. Am J Respir Crit Care Med. 2009;180:547–52.CrossRefPubMed Stanojevic S, Wade A, Cole TJ, Lum S, Custovic A, Silverman M, et al. Spirometry centile charts for young Caucasian children: the Asthma UK Collaborative Initiative. Am J Respir Crit Care Med. 2009;180:547–52.CrossRefPubMed
26.
go back to reference Patria MF, Esposito S. Recurrent lower respiratory tract infections in children: a practical approach to diagnosis. Paediatr Respir Rev. 2013;14:53–60.CrossRefPubMed Patria MF, Esposito S. Recurrent lower respiratory tract infections in children: a practical approach to diagnosis. Paediatr Respir Rev. 2013;14:53–60.CrossRefPubMed
Metadata
Title
Children with recurrent pneumonia and non-cystic fibrosis bronchiectasis
Authors
Maria Francesca Patria
Benedetta Longhi
Mara Lelii
Claudia Tagliabue
Marinella Lavelli
Carlotta Galeone
Nicola Principi
Susanna Esposito
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Italian Journal of Pediatrics / Issue 1/2016
Electronic ISSN: 1824-7288
DOI
https://doi.org/10.1186/s13052-016-0225-z

Other articles of this Issue 1/2016

Italian Journal of Pediatrics 1/2016 Go to the issue