Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2020

Open Access 01-12-2020 | Cardiopulmonary Resuscitation | Guideline

Cardiopulmonary resuscitation (CPR) during spaceflight - a guideline for CPR in microgravity from the German Society of Aerospace Medicine (DGLRM) and the European Society of Aerospace Medicine Space Medicine Group (ESAM-SMG)

Authors: Jochen Hinkelbein, Steffen Kerkhoff, Christoph Adler, Anton Ahlbäck, Stefan Braunecker, Daniel Burgard, Fabrizio Cirillo, Edoardo De Robertis, Eckard Glaser, Theresa K. Haidl, Pete Hodkinson, Ivan Zefiro Iovino, Stefanie Jansen, Kolaparambil Varghese Lydia Johnson, Saskia Jünger, Matthieu Komorowski, Marion Leary, Christina Mackaill, Alexander Nagrebetsky, Christopher Neuhaus, Lucas Rehnberg, Giovanni Marco Romano, Thais Russomano, Jan Schmitz, Oliver Spelten, Clément Starck, Seamus Thierry, Rochelle Velho, Tobias Warnecke

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2020

Login to get access

Abstract

Background

With the “Artemis”-mission mankind will return to the Moon by 2024. Prolonged periods in space will not only present physical and psychological challenges to the astronauts, but also pose risks concerning the medical treatment capabilities of the crew. So far, no guideline exists for the treatment of severe medical emergencies in microgravity. We, as a international group of researchers related to the field of aerospace medicine and critical care, took on the challenge and developed a an evidence-based guideline for the arguably most severe medical emergency – cardiac arrest.

Methods

After the creation of said international group, PICO questions regarding the topic cardiopulmonary resuscitation in microgravity were developed to guide the systematic literature research. Afterwards a precise search strategy was compiled which was then applied to “MEDLINE”. Four thousand one hundred sixty-five findings were retrieved and consecutively screened by at least 2 reviewers. This led to 88 original publications that were acquired in full-text version and then critically appraised using the GRADE methodology. Those studies formed to basis for the guideline recommendations that were designed by at least 2 experts on the given field. Afterwards those recommendations were subject to a consensus finding process according to the DELPHI-methodology.

Results

We recommend a differentiated approach to CPR in microgravity with a division into basic life support (BLS) and advanced life support (ALS) similar to the Earth-based guidelines. In immediate BLS, the chest compression method of choice is the Evetts-Russomano method (ER), whereas in an ALS scenario, with the patient being restrained on the Crew Medical Restraint System, the handstand method (HS) should be applied. Airway management should only be performed if at least two rescuers are present and the patient has been restrained. A supraglottic airway device should be used for airway management where crew members untrained in tracheal intubation (TI) are involved.

Discussion

CPR in microgravity is feasible and should be applied according to the Earth-based guidelines of the AHA/ERC in relation to fundamental statements, like urgent recognition and action, focus on high-quality chest compressions, compression depth and compression-ventilation ratio. However, the special circumstances presented by microgravity and spaceflight must be considered concerning central points such as rescuer position and methods for the performance of chest compressions, airway management and defibrillation.
Appendix
Available only for authorised users
Literature
5.
go back to reference Summers RL, Johnston SL, Marshburn TH, Williams DR. Emergencies in space. Ann Emerg Med. 2005;46(2):177–84.CrossRef Summers RL, Johnston SL, Marshburn TH, Williams DR. Emergencies in space. Ann Emerg Med. 2005;46(2):177–84.CrossRef
6.
go back to reference Walton ME, Kerstman EL, Program SS. Quantification of medical risk on the international space station using the integrated medical model. Aerosp Med Hum Perform. 2020;91(4):332–42.CrossRef Walton ME, Kerstman EL, Program SS. Quantification of medical risk on the international space station using the integrated medical model. Aerosp Med Hum Perform. 2020;91(4):332–42.CrossRef
8.
go back to reference Kouwenhoven WB, Jude JR, Knickerbocker G. Closed-chest cardiac massage. J Am Med Assoc. 1960;173(10):94–7.CrossRef Kouwenhoven WB, Jude JR, Knickerbocker G. Closed-chest cardiac massage. J Am Med Assoc. 1960;173(10):94–7.CrossRef
9.
go back to reference Acosta P, Varon J, Sternbach GL, Baskett P. Kouwenhoven , Jude and Knickerbocker The introduction of defibrillation and external chest compressions into modern resuscitation. Resuscitation. 2005;64:139–43.CrossRef Acosta P, Varon J, Sternbach GL, Baskett P. Kouwenhoven , Jude and Knickerbocker The introduction of defibrillation and external chest compressions into modern resuscitation. Resuscitation. 2005;64:139–43.CrossRef
10.
go back to reference Truhlář A, Deakin CD, Soar J, Khalifa GEA, Alfonzo A, Bierens JJLM, et al. European resuscitation council guidelines for resuscitation 2015. Section 4. Cardiac arrest in special circumstances. Resuscitation. 2015;95:148–201.CrossRef Truhlář A, Deakin CD, Soar J, Khalifa GEA, Alfonzo A, Bierens JJLM, et al. European resuscitation council guidelines for resuscitation 2015. Section 4. Cardiac arrest in special circumstances. Resuscitation. 2015;95:148–201.CrossRef
11.
go back to reference Perkins GD, Handley AJ, Koster RW, Castrén M, Smyth MA, Olasveengen T, et al. European resuscitation council guidelines for resuscitation 2015. Section 2. Adult basic life support and automated external defibrillation. Resuscitation. 2015;95:81–99.CrossRef Perkins GD, Handley AJ, Koster RW, Castrén M, Smyth MA, Olasveengen T, et al. European resuscitation council guidelines for resuscitation 2015. Section 2. Adult basic life support and automated external defibrillation. Resuscitation. 2015;95:81–99.CrossRef
20.
go back to reference Fink A, Kosecoff J, Brook RH. Consensus methods: characteristics. Am J Public Health. 1984;74(9):979–83.CrossRef Fink A, Kosecoff J, Brook RH. Consensus methods: characteristics. Am J Public Health. 1984;74(9):979–83.CrossRef
22.
go back to reference Gordon AS. Cardiopulmonary resuscitation conference proceedings; 1967. Gordon AS. Cardiopulmonary resuscitation conference proceedings; 1967.
27.
go back to reference Barratt MR, Billica RD. Delivery of cardiopulmonary resuscitation in the microgravity environment. In: Aerospace Medical Association 63rd Annual Scientific Meeting Program; 1992. p. 21. Barratt MR, Billica RD. Delivery of cardiopulmonary resuscitation in the microgravity environment. In: Aerospace Medical Association 63rd Annual Scientific Meeting Program; 1992. p. 21.
29.
go back to reference Evetts SN, Evetts LM, Russomano T, Castro JC, Ernsting J. Basic life support in microgravity: evaluation of a novel method during parabolic flight. Aviat Sp Environ Med. 2005;76(5):506–10. Evetts SN, Evetts LM, Russomano T, Castro JC, Ernsting J. Basic life support in microgravity: evaluation of a novel method during parabolic flight. Aviat Sp Environ Med. 2005;76(5):506–10.
30.
go back to reference Jay GD, Lee P, Goldsmith H, Battat J, Maurer J, Suner S. CPR effectiveness in microgravity: comparison of three positions and a mechanical device. Aviat Sp Environ Med. 2003;74(11):1183–9. Jay GD, Lee P, Goldsmith H, Battat J, Maurer J, Suner S. CPR effectiveness in microgravity: comparison of three positions and a mechanical device. Aviat Sp Environ Med. 2003;74(11):1183–9.
31.
go back to reference Johnston SL, Campbell MR, Billica RD, Gilmore SM. Cardiopulmonary resuscitation in microgravity: efficacy in the swine during parabolic flight. Aviat Sp Environ Med. 2004;75(6):546–50. Johnston SL, Campbell MR, Billica RD, Gilmore SM. Cardiopulmonary resuscitation in microgravity: efficacy in the swine during parabolic flight. Aviat Sp Environ Med. 2004;75(6):546–50.
34.
go back to reference Rehnberg L, Ashcroft A, Baers JH, Campos F, Cardoso RB, Velho R, et al. Three methods of manual external chest compressions during microgravity simulation. Aviat Sp Environ Med. 2014;85(7):687–93.CrossRef Rehnberg L, Ashcroft A, Baers JH, Campos F, Cardoso RB, Velho R, et al. Three methods of manual external chest compressions during microgravity simulation. Aviat Sp Environ Med. 2014;85(7):687–93.CrossRef
35.
go back to reference Kordi M, Kluge N, Kloeckner M, Russomano T. Gender influence on the performance of chest compressions in simulated hypogravity and microgravity. Aviat Sp Environ Med. 2012;83(7):643–8.CrossRef Kordi M, Kluge N, Kloeckner M, Russomano T. Gender influence on the performance of chest compressions in simulated hypogravity and microgravity. Aviat Sp Environ Med. 2012;83(7):643–8.CrossRef
39.
go back to reference Hurst VW, Whittam SW, Austin PN, Branson RD, Beck G. Cardiopulmonary resuscitation during spaceflight: examining the role of timing devices. Aviat Sp Environ Med. 2011;82(8):810–3.CrossRef Hurst VW, Whittam SW, Austin PN, Branson RD, Beck G. Cardiopulmonary resuscitation during spaceflight: examining the role of timing devices. Aviat Sp Environ Med. 2011;82(8):810–3.CrossRef
42.
go back to reference Soar J, Nolan JP, Böttiger BW, Perkins GD, Lott C, Carli P, et al. European resuscitation council guidelines for resuscitation 2015. Section 3. Adult advanced life support. Resuscitation. 2015;95:100–47.CrossRef Soar J, Nolan JP, Böttiger BW, Perkins GD, Lott C, Carli P, et al. European resuscitation council guidelines for resuscitation 2015. Section 3. Adult advanced life support. Resuscitation. 2015;95:100–47.CrossRef
44.
go back to reference Bossaert LL, Perkins GD, Askitopoulou H, Raffay VI, Greif R, Haywood KL, et al. European resuscitation council guidelines for resuscitation 2015. Section 11. The ethics of resuscitation and end-of-life decisions. Resuscitation. 2015;95:302–11.CrossRef Bossaert LL, Perkins GD, Askitopoulou H, Raffay VI, Greif R, Haywood KL, et al. European resuscitation council guidelines for resuscitation 2015. Section 11. The ethics of resuscitation and end-of-life decisions. Resuscitation. 2015;95:302–11.CrossRef
54.
go back to reference Sczepaniak J, Nakao K, Ishikita N, Freiman K, Ngo K. Cardiopulmonary resuscitation in microgravity using the Lucas 2 compressiondevice; 2016. Sczepaniak J, Nakao K, Ishikita N, Freiman K, Ngo K. Cardiopulmonary resuscitation in microgravity using the Lucas 2 compressiondevice; 2016.
57.
go back to reference Warnecke T, Schmitz J, Kerkhoff S, Komorowski M, Neuhaus C, Hinkelbein J. Airway management in microgravity – a systematic review. Acta Anaesthesiol Scand. 2018. Warnecke T, Schmitz J, Kerkhoff S, Komorowski M, Neuhaus C, Hinkelbein J. Airway management in microgravity – a systematic review. Acta Anaesthesiol Scand. 2018.
58.
go back to reference Groemer GE, Brimacombe J, Haas T, De Negueruela C, Soucek A, Thomsen M, et al. The feasibility of laryngoscope-guided tracheal intubation in microgravity during parabolic flight: a comparison of two techniques. Anesth Analg. 2005;101(5):1533–5.CrossRef Groemer GE, Brimacombe J, Haas T, De Negueruela C, Soucek A, Thomsen M, et al. The feasibility of laryngoscope-guided tracheal intubation in microgravity during parabolic flight: a comparison of two techniques. Anesth Analg. 2005;101(5):1533–5.CrossRef
65.
go back to reference Campbell MR, Billica RD, Johnston SL, Muller MS. Performance of advanced trauma life support procedures in microgravity. Aviat Sp Environ Med. 2002;73(9):907–12. Campbell MR, Billica RD, Johnston SL, Muller MS. Performance of advanced trauma life support procedures in microgravity. Aviat Sp Environ Med. 2002;73(9):907–12.
66.
go back to reference McCuaig K, Lloyd CW, Gosbee J, Snyder WW. Simulation of blood flow in microgravity. Am J Surg. 1992;164(2):119–23.CrossRef McCuaig K, Lloyd CW, Gosbee J, Snyder WW. Simulation of blood flow in microgravity. Am J Surg. 1992;164(2):119–23.CrossRef
68.
go back to reference Kirkpatrick AW, McKee JL, Tien CH, LaPorta AJ, Lavell K, Leslie T, et al. Abbreviated closure for remote damage control laparotomy in extreme environments: a randomized trial of sutures versus wound clamps comparing terrestrial and weightless conditions. Am J Surg. 2017;213(5):862–9.CrossRef Kirkpatrick AW, McKee JL, Tien CH, LaPorta AJ, Lavell K, Leslie T, et al. Abbreviated closure for remote damage control laparotomy in extreme environments: a randomized trial of sutures versus wound clamps comparing terrestrial and weightless conditions. Am J Surg. 2017;213(5):862–9.CrossRef
71.
go back to reference Panchal AR, Berg KM, Hirsch KG, Kudenchuk PJ, Del Rios M, Cabañas JG, et al. American Heart Association Focused Update on Advanced Cardiovascular Life Support: Use of Advanced Airways, Vasopressors, and Extracorporeal Cardiopulmonary Resuscitation During Cardiac Arrest: An Update to the American Heart Association Guidelines f. Circulation. 2019, 2019; Available from: https://www.ahajournals.org/doi/10.1161/CIR.0000000000000732. Panchal AR, Berg KM, Hirsch KG, Kudenchuk PJ, Del Rios M, Cabañas JG, et al. American Heart Association Focused Update on Advanced Cardiovascular Life Support: Use of Advanced Airways, Vasopressors, and Extracorporeal Cardiopulmonary Resuscitation During Cardiac Arrest: An Update to the American Heart Association Guidelines f. Circulation. 2019, 2019; Available from: https://​www.​ahajournals.​org/​doi/​10.​1161/​CIR.​0000000000000732​.
76.
go back to reference Gillis DB, Hamilton DR. Estimating outcomes of astronauts with myocardial infarction in exploration class space missions. Aviat Sp Environ Med. 2012;83(2):79–91.CrossRef Gillis DB, Hamilton DR. Estimating outcomes of astronauts with myocardial infarction in exploration class space missions. Aviat Sp Environ Med. 2012;83(2):79–91.CrossRef
81.
go back to reference Cermack M. Monitoring and telemedicine support in remote environments and in human space flight. Br J Anaesth. 2006;97(1):107–14.CrossRef Cermack M. Monitoring and telemedicine support in remote environments and in human space flight. Br J Anaesth. 2006;97(1):107–14.CrossRef
82.
go back to reference Harnett BM, Doarn CR, Russell KM, Kapoor V, Merriam NR, Merrell RC. Wireless telemetry and internet technologies for medical management: a Martian analogy. Aviat Sp Environ Med. 2001;72(12):1125–31. Harnett BM, Doarn CR, Russell KM, Kapoor V, Merriam NR, Merrell RC. Wireless telemetry and internet technologies for medical management: a Martian analogy. Aviat Sp Environ Med. 2001;72(12):1125–31.
90.
go back to reference Ball JR. Safe passage: Astronaut Care for Exploration Missions. Institute of Medicine. Washington, DC: National Academy of Sciences; 2001. Ball JR. Safe passage: Astronaut Care for Exploration Missions. Institute of Medicine. Washington, DC: National Academy of Sciences; 2001.
93.
go back to reference Albery WB, Armstrong HG, Goodyear C. The effect of noise or acceleration stress on human mental work load and performance. Aviat Sp Environ Med. 1988;59(5):487. Albery WB, Armstrong HG, Goodyear C. The effect of noise or acceleration stress on human mental work load and performance. Aviat Sp Environ Med. 1988;59(5):487.
94.
go back to reference Hockey G. Stress and fatigue in human performance. Chichester: Wiley; 1983. Hockey G. Stress and fatigue in human performance. Chichester: Wiley; 1983.
100.
go back to reference Grigoriev AJ, Polyakov VV, Bogomolov VV, Egorov AD, I.D. Pestov IBK. Medical results of the fourth prime expedition on the orbital station MIR. In: Fourth European Symposium on Life Sciences Res in Space. Trieste; 1990. p. 19–22. Grigoriev AJ, Polyakov VV, Bogomolov VV, Egorov AD, I.D. Pestov IBK. Medical results of the fourth prime expedition on the orbital station MIR. In: Fourth European Symposium on Life Sciences Res in Space. Trieste; 1990. p. 19–22.
106.
go back to reference Pattyn N, Migeotte P, Demaesselaer W, Kolinsky R, Morais JMZ. Investigation human cognitive performance during spaceflight. J Gravit Physiol. 2005;12:39–40. Pattyn N, Migeotte P, Demaesselaer W, Kolinsky R, Morais JMZ. Investigation human cognitive performance during spaceflight. J Gravit Physiol. 2005;12:39–40.
110.
go back to reference Baarsen van B, Ferlazzo F, Ferravante D, Di Nocera F, Jørgensen J, Logo O, et al. The Mars500 Lodgead study. Primary results of the Mars105 pilot study. In: International Astronautical Congress. 2009. Baarsen van B, Ferlazzo F, Ferravante D, Di Nocera F, Jørgensen J, Logo O, et al. The Mars500 Lodgead study. Primary results of the Mars105 pilot study. In: International Astronautical Congress. 2009.
Metadata
Title
Cardiopulmonary resuscitation (CPR) during spaceflight - a guideline for CPR in microgravity from the German Society of Aerospace Medicine (DGLRM) and the European Society of Aerospace Medicine Space Medicine Group (ESAM-SMG)
Authors
Jochen Hinkelbein
Steffen Kerkhoff
Christoph Adler
Anton Ahlbäck
Stefan Braunecker
Daniel Burgard
Fabrizio Cirillo
Edoardo De Robertis
Eckard Glaser
Theresa K. Haidl
Pete Hodkinson
Ivan Zefiro Iovino
Stefanie Jansen
Kolaparambil Varghese Lydia Johnson
Saskia Jünger
Matthieu Komorowski
Marion Leary
Christina Mackaill
Alexander Nagrebetsky
Christopher Neuhaus
Lucas Rehnberg
Giovanni Marco Romano
Thais Russomano
Jan Schmitz
Oliver Spelten
Clément Starck
Seamus Thierry
Rochelle Velho
Tobias Warnecke
Publication date
01-12-2020
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s13049-020-00793-y

Other articles of this Issue 1/2020

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2020 Go to the issue