Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2019

Open Access 01-12-2019 | Care | Original research

Diagnostic value of prehospital arterial blood gas measurements – a randomised controlled trial

Authors: Stine T. Zwisler, Yecatarina Zincuk, Caroline B. Bering, Aleksander Zincuk, Mads Nybo, Søren Mikkelsen

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2019

Login to get access

Abstract

Background

Arterial blood gas analysis is an important diagnostic tool in managing critically ill patients within the hospital. Whether prehospital application of this diagnostic modality contributes to more exact diagnoses and treatments in critically ill prehospital patients is unknown. The aim of this study was to establish whether access to arterial blood gas analysis increased the prehospital diagnostic accuracy of prehospital anaesthesiologists. Furthermore, we investigated whether prehospital blood gas analysis resulted in therapeutic interventions that would not have been carried out if the arterial blood gas analyser had not been available.

Methods

In a prospective randomised study, two groups of prehospital adult patients with acute critical illness were compared. All patients received standard prehospital care. In the intervention group, an arterial blood gas sample was analysed prehospitally. The primary outcome was the impact of blood gas analysis on the accuracy of prehospital diagnoses. Furthermore, we registered any therapeutic interventions that were carried out as a direct result of the blood gas analysis.

Results

A total of 310 patients were included in the study. Eighty-eight of these patients were subsequently excluded, primarily due to difficulties in obtaining post hoc consent or venous sampling or other technical difficulties. A total of 102 patients was analysed in the arterial blood gas group (ABG group), while 120 patients were analysed in the standard care group (noABG group). In 78 of the 102 patients in the ABG group, the prehospital physician reported that ABG analysis increased their perceived diagnostic precision. In 81 cases in the noABG group, the lack of arterial blood gas analysis was perceived to have decreased diagnostic accuracy. The claim that ABG analysis increased diagnostic accuracy could, however, not be substantiated as there was no difference in the number of un-specific diagnoses between the groups.
Blood gas analysis increased the probability of targeting specific prehospital therapeutic interventions and led to 159 interventions, including intubation, ventilation and/or upgrading the level of urgency, in 71 ABG-group patients (p < 0.001).

Conclusion

Although prehospital arterial blood gas analysis did not improve the accuracy of the prehospital diagnoses assigned to patients, it significantly increased the quality of treatment provided to patients with acute critical illness.

Trial registration

ClinicalTrials.gov, NCT03006692, retrospectively registered six months after first patient entry.
Literature
1.
go back to reference Sauter TC, Capaldo G, Hoffmann M, Birrenbach T, Hautz SC, Kämmer JE, et al. Non-specific complaints at emergency department presentation result in unclear diagnoses and lengthened hospitalization: a prospective observational studyScand. J Trauma Resusc Emerg Med. 2018;26:60.CrossRef Sauter TC, Capaldo G, Hoffmann M, Birrenbach T, Hautz SC, Kämmer JE, et al. Non-specific complaints at emergency department presentation result in unclear diagnoses and lengthened hospitalization: a prospective observational studyScand. J Trauma Resusc Emerg Med. 2018;26:60.CrossRef
2.
go back to reference Ilgen JS, Humbert AJ, Kuhn G, Hansen ML, Norman GR, Eva KW, et al. Assessing diagnostic reasoning: a consensus statement summarizing theory, practice, and future needs. Acad Emerg Med. 2012;19(12):1454–61.CrossRef Ilgen JS, Humbert AJ, Kuhn G, Hansen ML, Norman GR, Eva KW, et al. Assessing diagnostic reasoning: a consensus statement summarizing theory, practice, and future needs. Acad Emerg Med. 2012;19(12):1454–61.CrossRef
3.
go back to reference Stengaard C, Sørensen JT, Ladefoged SA, Christensen EF, Lassen JF, Bøtker HE, et al. Quantitative point-of-care troponin T measurement for diagnosis and prognosis in patients with a suspected acute myocardial infarction. Am J Cardiol. 2013;112:1361–6.CrossRef Stengaard C, Sørensen JT, Ladefoged SA, Christensen EF, Lassen JF, Bøtker HE, et al. Quantitative point-of-care troponin T measurement for diagnosis and prognosis in patients with a suspected acute myocardial infarction. Am J Cardiol. 2013;112:1361–6.CrossRef
4.
go back to reference Guyette FX, Meier EN, Newgard C, McKnight B, Daya M, Bulger EM, et al. A comparison of prehospital lactate and systolic blood pressure for predicting the need for resuscitative care in trauma transported by ground. J Trauma Acute Care Surg. 2015;78:600–6.CrossRef Guyette FX, Meier EN, Newgard C, McKnight B, Daya M, Bulger EM, et al. A comparison of prehospital lactate and systolic blood pressure for predicting the need for resuscitative care in trauma transported by ground. J Trauma Acute Care Surg. 2015;78:600–6.CrossRef
5.
go back to reference Foss KT, Subhi Y, Aagaard R, Bessmann EL, Bøtker MT, Graumann O, et al. Developing an emergency ultrasound app – a collaborative project between clinicians from different universities. Scand J Trauma Resusc Emerg Med. 2015;23:47.CrossRef Foss KT, Subhi Y, Aagaard R, Bessmann EL, Bøtker MT, Graumann O, et al. Developing an emergency ultrasound app – a collaborative project between clinicians from different universities. Scand J Trauma Resusc Emerg Med. 2015;23:47.CrossRef
6.
go back to reference Nelson BP, Sandghvi A. Out of hospital point of care ultrasound. Current use models and future directions. Eur J Trauma Emerg Surg. 2016;42:139–50.CrossRef Nelson BP, Sandghvi A. Out of hospital point of care ultrasound. Current use models and future directions. Eur J Trauma Emerg Surg. 2016;42:139–50.CrossRef
7.
go back to reference Laursen CB, Hänselmann A, Posth S, Mikkelsen S, Videbæk L, Berg H. Prehospital lung ultrasound for the diagnosis of cardiogenic pulmonary oedema: a pilot study. Scand J Trauma Resusc Emerg Med. 2016;24:96.CrossRef Laursen CB, Hänselmann A, Posth S, Mikkelsen S, Videbæk L, Berg H. Prehospital lung ultrasound for the diagnosis of cardiogenic pulmonary oedema: a pilot study. Scand J Trauma Resusc Emerg Med. 2016;24:96.CrossRef
8.
go back to reference Hov MR, Nome T, Zakariassen E, Russell D, Røislien J, Lossius HM, et al. Assessment of acute stroke cerebral CT examinations by anaesthesiologists. Acta Anaesthesiol Scand. 2015;59:1179–86.CrossRef Hov MR, Nome T, Zakariassen E, Russell D, Røislien J, Lossius HM, et al. Assessment of acute stroke cerebral CT examinations by anaesthesiologists. Acta Anaesthesiol Scand. 2015;59:1179–86.CrossRef
9.
go back to reference Bache KG, Hov MR, Larsen K, Solyga VM, Lund CG. Prehospital advanced diagnostics and treatment of acute stroke: protocol for a controlled intervention study. JMIR Res Protoc. 2018;7:e53.CrossRef Bache KG, Hov MR, Larsen K, Solyga VM, Lund CG. Prehospital advanced diagnostics and treatment of acute stroke: protocol for a controlled intervention study. JMIR Res Protoc. 2018;7:e53.CrossRef
10.
go back to reference Prause G, Hetz H, Doppler R. Preclinical blood gas analysis. 1. The value of preclinical blood gas analysis. Anaesthetist. 1998;47:400–5.CrossRef Prause G, Hetz H, Doppler R. Preclinical blood gas analysis. 1. The value of preclinical blood gas analysis. Anaesthetist. 1998;47:400–5.CrossRef
11.
go back to reference Prause G, Kaltenböck F, Doppler R. Preclinical blood gas analysis. 2. Experience with three blood gas analyzers in emergency care. Anaesthetist. 1998;47:490–5.CrossRef Prause G, Kaltenböck F, Doppler R. Preclinical blood gas analysis. 2. Experience with three blood gas analyzers in emergency care. Anaesthetist. 1998;47:490–5.CrossRef
12.
go back to reference Prause G, Ratzenhofer-Komenda B, Offner A, Lauda P, Voit H, Pojer H. Prehospital point of care testing of blood gases and electrolytes - an evaluation of IRMA. Crit Care. 1997;1:79–83.CrossRef Prause G, Ratzenhofer-Komenda B, Offner A, Lauda P, Voit H, Pojer H. Prehospital point of care testing of blood gases and electrolytes - an evaluation of IRMA. Crit Care. 1997;1:79–83.CrossRef
13.
go back to reference Wildner G, Pauker N, Archan S, Gemes G, Rigaud M, Pocivalnik M, et al. Arterial line in prehospital emergency settings - a feasibility study in four physician-staffed emergency medical systems. Resuscitation. 2011;82:1198–201.CrossRef Wildner G, Pauker N, Archan S, Gemes G, Rigaud M, Pocivalnik M, et al. Arterial line in prehospital emergency settings - a feasibility study in four physician-staffed emergency medical systems. Resuscitation. 2011;82:1198–201.CrossRef
14.
go back to reference Ettrup-Christensen A, Amstrup-Hansen L, Zwisler ST. Prehospital arterial blood gas analysis after collapse connected to triathlon participation. Ugeskr Laeger. 2017;179. Ettrup-Christensen A, Amstrup-Hansen L, Zwisler ST. Prehospital arterial blood gas analysis after collapse connected to triathlon participation. Ugeskr Laeger. 2017;179.
15.
go back to reference Spindelboeck W, Gemes G, Strasser C, Toescher K, Kores B, Metnitz P, et al. Arterial blood gases during and their dynamic changes after cardiopulmonary resuscitation: a prospective clinical study. Resuscitation. 2016;106:24–9.CrossRef Spindelboeck W, Gemes G, Strasser C, Toescher K, Kores B, Metnitz P, et al. Arterial blood gases during and their dynamic changes after cardiopulmonary resuscitation: a prospective clinical study. Resuscitation. 2016;106:24–9.CrossRef
16.
go back to reference Jousi M, Reitala J, Lund V, Katila A, Leppäniemi A. The role of pre-hospital blood gas analysis in trauma resuscitation. World J Emerg Surg. 2010;5:10.CrossRef Jousi M, Reitala J, Lund V, Katila A, Leppäniemi A. The role of pre-hospital blood gas analysis in trauma resuscitation. World J Emerg Surg. 2010;5:10.CrossRef
17.
go back to reference Belpomme V, Ricard-Hibon A, Devoir C, Dileseigres S, Devaud ML, Chollet C, et al. Correlation of arterial PCO2 and PETCO2 in prehospital controlled ventilation. Am J Emerg Med. 2005;23:852–9.CrossRef Belpomme V, Ricard-Hibon A, Devoir C, Dileseigres S, Devaud ML, Chollet C, et al. Correlation of arterial PCO2 and PETCO2 in prehospital controlled ventilation. Am J Emerg Med. 2005;23:852–9.CrossRef
18.
go back to reference Heuer JF, Gruschka D, Crozier TA, Bleckmann A, Plock E, Moerer O, et al. Accuracy of prehospital diagnoses by emergency physicians: comparison with discharge diagnosis. Eur J Emerg Med. 2012;19:292–6.CrossRef Heuer JF, Gruschka D, Crozier TA, Bleckmann A, Plock E, Moerer O, et al. Accuracy of prehospital diagnoses by emergency physicians: comparison with discharge diagnosis. Eur J Emerg Med. 2012;19:292–6.CrossRef
19.
go back to reference Mikkelsen S, Wolsing-Hansen J, Nybo M, Maegaard CU, Jepsen S. Implementation of the ABL-90 blood gas analyzer in a ground-based mobile emergency care unit. Scand J Trauma Resusc Emerg Med. 2015;23:54.CrossRef Mikkelsen S, Wolsing-Hansen J, Nybo M, Maegaard CU, Jepsen S. Implementation of the ABL-90 blood gas analyzer in a ground-based mobile emergency care unit. Scand J Trauma Resusc Emerg Med. 2015;23:54.CrossRef
20.
go back to reference Mikkelsen S, Lossius HM, Toft P, Lassen AT. Characteristics and prognoses of patients treated by an anaesthesiologist-manned prehospital emergency care unit. A retrospective cohort study. BMJ Open. 2017;7:e014383.CrossRef Mikkelsen S, Lossius HM, Toft P, Lassen AT. Characteristics and prognoses of patients treated by an anaesthesiologist-manned prehospital emergency care unit. A retrospective cohort study. BMJ Open. 2017;7:e014383.CrossRef
22.
go back to reference Gonsaga RA, Valiatti JL, Brugugnolli ID, Gilioli JP, Valiatti MF, Neves N, et al. Evaluation of gasometric parameters in trauma patients during mobile prehospital care. Rev Col Bras Cir. 2013;40:293–9.CrossRef Gonsaga RA, Valiatti JL, Brugugnolli ID, Gilioli JP, Valiatti MF, Neves N, et al. Evaluation of gasometric parameters in trauma patients during mobile prehospital care. Rev Col Bras Cir. 2013;40:293–9.CrossRef
23.
go back to reference Swan KL, Avard BJ, Keene T. The relationship between elevated prehospital point-of-care lactate measurements, intensive care unit admission, and mortality: A retrospective review of adult patients. Aust Crit Care 2018. pii: S1036–7314(17)30158–3. https://doi.org/10.1016/j.aucc.2018.02.006. [Epub ahead of print]. Swan KL, Avard BJ, Keene T. The relationship between elevated prehospital point-of-care lactate measurements, intensive care unit admission, and mortality: A retrospective review of adult patients. Aust Crit Care 2018. pii: S1036–7314(17)30158–3. https://​doi.​org/​10.​1016/​j.​aucc.​2018.​02.​006. [Epub ahead of print].
24.
go back to reference Tobias AZ, Guyette FX, Seymour CW, Suffoletto BP, Martin-Gill C, Quintero J, et al. Pre-resuscitation lactate and hospital mortality in prehospital patients. Prehosp Emerg Care. 2014;18:321–7.CrossRef Tobias AZ, Guyette FX, Seymour CW, Suffoletto BP, Martin-Gill C, Quintero J, et al. Pre-resuscitation lactate and hospital mortality in prehospital patients. Prehosp Emerg Care. 2014;18:321–7.CrossRef
Metadata
Title
Diagnostic value of prehospital arterial blood gas measurements – a randomised controlled trial
Authors
Stine T. Zwisler
Yecatarina Zincuk
Caroline B. Bering
Aleksander Zincuk
Mads Nybo
Søren Mikkelsen
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Care
DOI
https://doi.org/10.1186/s13049-019-0612-8

Other articles of this Issue 1/2019

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2019 Go to the issue