Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2018

Open Access 01-12-2018 | Original research

A prediction model for good neurological outcome in successfully resuscitated out-of-hospital cardiac arrest patients

Authors: Ward Eertmans, Thao Mai Phuong Tran, Cornelia Genbrugge, Laurens Peene, Dieter Mesotten, Jo Dens, Frank Jans, Cathy De Deyne

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2018

Login to get access

Abstract

Background

In the initial hours after out-of-hospital cardiac arrest (OHCA), it remains difficult to estimate whether the degree of post-ischemic brain damage will be compatible with long-term good neurological outcome. We aimed to construct prognostic models able to predict good neurological outcome of OHCA patients within 48 h after CCU admission using variables that are bedside available.

Methods

Based on prospectively gathered data, a retrospective data analysis was performed on 107 successfully resuscitated OHCA patients with a presumed cardiac cause of arrest. Targeted temperature management at 33 °C was initiated at CCU admission. Prediction models for good neurological outcome (CPC1–2) at 180 days post-CA were constructed at hour 1, 12, 24 and 48 after CCU admission. Following multiple imputation, variables were selected using the elastic-net method. Each imputed dataset was divided into training and validation sets (80% and 20% of patients, respectively). Logistic regression was fitted on training sets and prediction performance was evaluated on validation sets using misclassification rates.

Results

The prediction model at hour 24 predicted good neurological outcome with the lowest misclassification rate (21.5%), using a cut-off probability of 0.55 (sensitivity = 75%; specificity = 82%). This model contained sex, age, diabetes status, initial rhythm, percutaneous coronary intervention, presence of a BIS 0 value, mean BIS value and lactate as predictive variables for good neurological outcome.

Discussion

This study shows that good neurological outcome after OHCA can be reasonably predicted as early as 24 h following ICU admission using parameters that are bedside available. These prediction models could identify patients who would benefit the most from intensive care.
Literature
1.
go back to reference Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30(11):2126–8.CrossRef Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30(11):2126–8.CrossRef
2.
go back to reference Dragancea I, Rundgren M, Englund E, Friberg H, Cronberg T. The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation. 2013;84(3):337–42.CrossRef Dragancea I, Rundgren M, Englund E, Friberg H, Cronberg T. The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation. 2013;84(3):337–42.CrossRef
3.
go back to reference Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.CrossRef Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.CrossRef
4.
go back to reference Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VR, Deakin CD, et al. European resuscitation council and European Society of Intensive Care Medicine Guidelines for post-resuscitation care 2015: Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation. 2015;95:202–22.CrossRef Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VR, Deakin CD, et al. European resuscitation council and European Society of Intensive Care Medicine Guidelines for post-resuscitation care 2015: Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation. 2015;95:202–22.CrossRef
5.
go back to reference Wijdicks EF, Hijdra A, Young GB, Bassetti CL, Wiebe S. Quality standards Subcommittee of the American Academy of N. practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the quality standards Subcommittee of the American Academy of neurology. Neurology. 2006;67(2):203–10.CrossRef Wijdicks EF, Hijdra A, Young GB, Bassetti CL, Wiebe S. Quality standards Subcommittee of the American Academy of N. practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the quality standards Subcommittee of the American Academy of neurology. Neurology. 2006;67(2):203–10.CrossRef
6.
go back to reference Sandroni C, Cariou A, Cavallaro F, Cronberg T, Friberg H, Hoedemaekers C, et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European resuscitation council and the European Society of Intensive Care Medicine. Resuscitation. 2014;85(12):1779–89.CrossRef Sandroni C, Cariou A, Cavallaro F, Cronberg T, Friberg H, Hoedemaekers C, et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European resuscitation council and the European Society of Intensive Care Medicine. Resuscitation. 2014;85(12):1779–89.CrossRef
7.
go back to reference Oddo M, Friberg H. Neuroprognostication after cardiac arrest in the light of targeted temperature management. Curr Opin Crit Care. 2017;23(3):244–50.CrossRef Oddo M, Friberg H. Neuroprognostication after cardiac arrest in the light of targeted temperature management. Curr Opin Crit Care. 2017;23(3):244–50.CrossRef
8.
go back to reference Rossetti AO, Rabinstein AA, Oddo M. Neurological prognostication of outcome in patients in coma after cardiac arrest. Lancet Neurol. 2016;15(6):597–609.CrossRef Rossetti AO, Rabinstein AA, Oddo M. Neurological prognostication of outcome in patients in coma after cardiac arrest. Lancet Neurol. 2016;15(6):597–609.CrossRef
9.
go back to reference Adrie C, Cariou A, Mourvillier B, Laurent I, Dabbane H, Hantala F, et al. Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: the OHCA score. Eur Heart J. 2006;27(23):2840–5.CrossRef Adrie C, Cariou A, Mourvillier B, Laurent I, Dabbane H, Hantala F, et al. Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: the OHCA score. Eur Heart J. 2006;27(23):2840–5.CrossRef
10.
go back to reference Valenzuela TD, Roe DJ, Cretin S, Spaite DW, Larsen MP. Estimating effectiveness of cardiac arrest interventions: a logistic regression survival model. Circulation. 1997;96(10):3308–13.CrossRef Valenzuela TD, Roe DJ, Cretin S, Spaite DW, Larsen MP. Estimating effectiveness of cardiac arrest interventions: a logistic regression survival model. Circulation. 1997;96(10):3308–13.CrossRef
11.
go back to reference Hayakawa K, Tasaki O, Hamasaki T, Sakai T, Shiozaki T, Nakagawa Y, et al. Prognostic indicators and outcome prediction model for patients with return of spontaneous circulation from cardiopulmonary arrest: the Utstein Osaka project. Resuscitation. 2011;82(7):874–80.CrossRef Hayakawa K, Tasaki O, Hamasaki T, Sakai T, Shiozaki T, Nakagawa Y, et al. Prognostic indicators and outcome prediction model for patients with return of spontaneous circulation from cardiopulmonary arrest: the Utstein Osaka project. Resuscitation. 2011;82(7):874–80.CrossRef
12.
go back to reference Okada K, Ohde S, Otani N, Sera T, Mochizuki T, Aoki M, et al. Prediction protocol for neurological outcome for survivors of out-of-hospital cardiac arrest treated with targeted temperature management. Resuscitation. 2012;83(6):734–9.CrossRef Okada K, Ohde S, Otani N, Sera T, Mochizuki T, Aoki M, et al. Prediction protocol for neurological outcome for survivors of out-of-hospital cardiac arrest treated with targeted temperature management. Resuscitation. 2012;83(6):734–9.CrossRef
13.
go back to reference Nishikimi M, Matsuda N, Matsui K, Takahashi K, Ejima T, Liu K, et al. A novel scoring system for predicting the neurologic prognosis prior to the initiation of induced hypothermia in cases of post-cardiac arrest syndrome: the CAST score. Scand J Trauma Resusc Emerg Med. 2017;25(1):49.CrossRef Nishikimi M, Matsuda N, Matsui K, Takahashi K, Ejima T, Liu K, et al. A novel scoring system for predicting the neurologic prognosis prior to the initiation of induced hypothermia in cases of post-cardiac arrest syndrome: the CAST score. Scand J Trauma Resusc Emerg Med. 2017;25(1):49.CrossRef
14.
go back to reference Maupain C, Bougouin W, Lamhaut L, Deye N, Diehl JL, Geri G, et al. The CAHP (cardiac arrest hospital prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest. Eur Heart J. 2016;37(42):3222–8.CrossRef Maupain C, Bougouin W, Lamhaut L, Deye N, Diehl JL, Geri G, et al. The CAHP (cardiac arrest hospital prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest. Eur Heart J. 2016;37(42):3222–8.CrossRef
15.
go back to reference Genbrugge C, Eertmans W, Meex I, Van Kerrebroeck M, Daems N, Creemers A, et al. What is the value of regional cerebral saturation in post-cardiac arrest patients? A prospective observational study. Crit Care. 2016;20(1):327.CrossRef Genbrugge C, Eertmans W, Meex I, Van Kerrebroeck M, Daems N, Creemers A, et al. What is the value of regional cerebral saturation in post-cardiac arrest patients? A prospective observational study. Crit Care. 2016;20(1):327.CrossRef
16.
go back to reference Eertmans W, Genbrugge C, Vander Laenen M, Boer W, Mesotten D, Dens J, et al. The prognostic value of bispectral index and suppression ratio monitoring after out-of-hospital cardiac arrest: a prospective observational study. Ann Intensive Care. 2018;8(1):34.CrossRef Eertmans W, Genbrugge C, Vander Laenen M, Boer W, Mesotten D, Dens J, et al. The prognostic value of bispectral index and suppression ratio monitoring after out-of-hospital cardiac arrest: a prospective observational study. Ann Intensive Care. 2018;8(1):34.CrossRef
17.
go back to reference Meex I, Dens J, Jans F, Boer W, Vanhengel K, Vundelinckx G, et al. Cerebral tissue oxygen saturation during therapeutic hypothermia in post-cardiac arrest patients. Resuscitation. 2013;84(6):788–93.CrossRef Meex I, Dens J, Jans F, Boer W, Vanhengel K, Vundelinckx G, et al. Cerebral tissue oxygen saturation during therapeutic hypothermia in post-cardiac arrest patients. Resuscitation. 2013;84(6):788–93.CrossRef
18.
go back to reference Peberdy MA, Callaway CW, Neumar RW, Geocadin RG, Zimmerman JL, Donnino M, et al. Part 9: post-cardiac arrest care: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122(18 Suppl 3):S768–86.CrossRef Peberdy MA, Callaway CW, Neumar RW, Geocadin RG, Zimmerman JL, Donnino M, et al. Part 9: post-cardiac arrest care: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122(18 Suppl 3):S768–86.CrossRef
19.
go back to reference Grenvik A, Safar P. Brain failure and resuscitation. New York: Churchill Livingstone; 1981. Grenvik A, Safar P. Brain failure and resuscitation. New York: Churchill Livingstone; 1981.
20.
go back to reference van Buuren SG-OK. Mice: multivariate imputation by chained equations in R. J Stat Softw. 2011;45(3). van Buuren SG-OK. Mice: multivariate imputation by chained equations in R. J Stat Softw. 2011;45(3).
21.
go back to reference Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci 2007;8(3):206–213.CrossRef Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci 2007;8(3):206–213.CrossRef
22.
go back to reference Zou HH. T. Regularization and variable selection via the elastic net. JR Statist Soc B. 2005;67:301–20.CrossRef Zou HH. T. Regularization and variable selection via the elastic net. JR Statist Soc B. 2005;67:301–20.CrossRef
23.
go back to reference Rossetti AO, Urbano LA, Delodder F, Kaplan PW, Oddo M. Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Crit Care. 2010;14(5):R173.CrossRef Rossetti AO, Urbano LA, Delodder F, Kaplan PW, Oddo M. Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Crit Care. 2010;14(5):R173.CrossRef
24.
go back to reference Dragancea I, Horn J, Kuiper M, Friberg H, Ullen S, Wetterslev J, et al. Neurological prognostication after cardiac arrest and targeted temperature management 33 degrees C versus 36 degrees C: results from a randomised controlled clinical trial. Resuscitation. 2015;93:164–70.CrossRef Dragancea I, Horn J, Kuiper M, Friberg H, Ullen S, Wetterslev J, et al. Neurological prognostication after cardiac arrest and targeted temperature management 33 degrees C versus 36 degrees C: results from a randomised controlled clinical trial. Resuscitation. 2015;93:164–70.CrossRef
25.
go back to reference Stammet P, Collignon O, Hassager C, Wise MP, Hovdenes J, Aneman A, et al. Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33 degrees C and 36 degrees C. J Am Coll Cardiol. 2015;65(19):2104–14.CrossRef Stammet P, Collignon O, Hassager C, Wise MP, Hovdenes J, Aneman A, et al. Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33 degrees C and 36 degrees C. J Am Coll Cardiol. 2015;65(19):2104–14.CrossRef
26.
go back to reference Hirsch KG, Mlynash M, Eyngorn I, Pirsaheli R, Okada A, Komshian S, et al. Multi-center study of diffusion-weighted imaging in coma after cardiac arrest. Neurocrit Care. 2016;24(1):82–9.CrossRef Hirsch KG, Mlynash M, Eyngorn I, Pirsaheli R, Okada A, Komshian S, et al. Multi-center study of diffusion-weighted imaging in coma after cardiac arrest. Neurocrit Care. 2016;24(1):82–9.CrossRef
27.
go back to reference Eertmans W, Genbrugge C, Haesevoets G, Dens J, Boer W, Jans F, et al. Recorded time periods of bispectral index values equal to zero predict neurological outcome after out-of-hospital cardiac arrest. Crit Care. 2017;21(1):221.CrossRef Eertmans W, Genbrugge C, Haesevoets G, Dens J, Boer W, Jans F, et al. Recorded time periods of bispectral index values equal to zero predict neurological outcome after out-of-hospital cardiac arrest. Crit Care. 2017;21(1):221.CrossRef
28.
go back to reference Engdahl J, Holmberg M, Karlson BW, Luepker R, Herlitz J. The epidemiology of out-of-hospital 'sudden' cardiac arrest. Resuscitation. 2002;52(3):235–45.CrossRef Engdahl J, Holmberg M, Karlson BW, Luepker R, Herlitz J. The epidemiology of out-of-hospital 'sudden' cardiac arrest. Resuscitation. 2002;52(3):235–45.CrossRef
29.
go back to reference Dumas F, Cariou A, Manzo-Silberman S, Grimaldi D, Vivien B, Rosencher J, et al. Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian region out of hospital cardiac ArresT) registry. Circ Cardiovasc Interv. 2010;3(3):200–7.CrossRef Dumas F, Cariou A, Manzo-Silberman S, Grimaldi D, Vivien B, Rosencher J, et al. Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian region out of hospital cardiac ArresT) registry. Circ Cardiovasc Interv. 2010;3(3):200–7.CrossRef
30.
go back to reference Kroupa J, Knot J, Ulman J, Bednar F, Dohnalova A, Motovska Z. Characteristics and survival determinants in patients after out-of-hospital cardiac arrest in the era of 24/7 coronary intervention facilities. Heart Lung Circ. 2017;26(8):799–807.CrossRef Kroupa J, Knot J, Ulman J, Bednar F, Dohnalova A, Motovska Z. Characteristics and survival determinants in patients after out-of-hospital cardiac arrest in the era of 24/7 coronary intervention facilities. Heart Lung Circ. 2017;26(8):799–807.CrossRef
31.
go back to reference Parry M, Danielson K, Brennenstuhl S, Drennan IR, Morrison LJ. The association between diabetes status and survival following an out-of-hospital cardiac arrest: a retrospective cohort study. Resuscitation. 2017;113:21–6.CrossRef Parry M, Danielson K, Brennenstuhl S, Drennan IR, Morrison LJ. The association between diabetes status and survival following an out-of-hospital cardiac arrest: a retrospective cohort study. Resuscitation. 2017;113:21–6.CrossRef
32.
go back to reference Stammet P, Wagner DR, Gilson G, Devaux Y. Modeling serum level of s100beta and bispectral index to predict outcome after cardiac arrest. J Am Coll Cardiol. 2013;62(9):851–8.CrossRef Stammet P, Wagner DR, Gilson G, Devaux Y. Modeling serum level of s100beta and bispectral index to predict outcome after cardiac arrest. J Am Coll Cardiol. 2013;62(9):851–8.CrossRef
33.
go back to reference Stammet P, Collignon O, Werer C, Sertznig C, Devaux Y. Bispectral index to predict neurological outcome early after cardiac arrest. Resuscitation. 2014;85(12):1674–80.CrossRef Stammet P, Collignon O, Werer C, Sertznig C, Devaux Y. Bispectral index to predict neurological outcome early after cardiac arrest. Resuscitation. 2014;85(12):1674–80.CrossRef
34.
go back to reference Seder DB, Fraser GL, Robbins T, Libby L, Riker RR. The bispectral index and suppression ratio are very early predictors of neurological outcome during therapeutic hypothermia after cardiac arrest. Intensive Care Med. 2010;36(2):281–8.CrossRef Seder DB, Fraser GL, Robbins T, Libby L, Riker RR. The bispectral index and suppression ratio are very early predictors of neurological outcome during therapeutic hypothermia after cardiac arrest. Intensive Care Med. 2010;36(2):281–8.CrossRef
35.
go back to reference Mahapatra S, Bunch TJ, White RD, Hodge DO, Packer DL. Sex differences in outcome after ventricular fibrillation in out-of-hospital cardiac arrest. Resuscitation. 2005;65(2):197–202.CrossRef Mahapatra S, Bunch TJ, White RD, Hodge DO, Packer DL. Sex differences in outcome after ventricular fibrillation in out-of-hospital cardiac arrest. Resuscitation. 2005;65(2):197–202.CrossRef
36.
go back to reference Rea TD, Eisenberg MS, Becker LJ, Murray JA, Hearne T. Temporal trends in sudden cardiac arrest: a 25-year emergency medical services perspective. Circulation. 2003;107(22):2780–5.CrossRef Rea TD, Eisenberg MS, Becker LJ, Murray JA, Hearne T. Temporal trends in sudden cardiac arrest: a 25-year emergency medical services perspective. Circulation. 2003;107(22):2780–5.CrossRef
37.
go back to reference Lee TR, Kang MJ, Cha WC, Shin TG, Sim MS, Jo IJ, et al. Better lactate clearance associated with good neurologic outcome in survivors who treated with therapeutic hypothermia after out-of-hospital cardiac arrest. Crit Care. 2013;17(5):R260.CrossRef Lee TR, Kang MJ, Cha WC, Shin TG, Sim MS, Jo IJ, et al. Better lactate clearance associated with good neurologic outcome in survivors who treated with therapeutic hypothermia after out-of-hospital cardiac arrest. Crit Care. 2013;17(5):R260.CrossRef
38.
go back to reference Hasper D, von Haehling S, Storm C, Jorres A, Schefold JC. Changes in serum creatinine in the first 24 hours after cardiac arrest indicate prognosis: an observational cohort study. Crit Care. 2009;13(5):R168.CrossRef Hasper D, von Haehling S, Storm C, Jorres A, Schefold JC. Changes in serum creatinine in the first 24 hours after cardiac arrest indicate prognosis: an observational cohort study. Crit Care. 2009;13(5):R168.CrossRef
39.
go back to reference Wiberg S, Hassager C, Stammet P, Winther-Jensen M, Thomsen JH, Erlinge D, et al. Single versus serial measurements of neuron-specific enolase and prediction of poor neurological outcome in persistently unconscious patients after out-of-hospital cardiac arrest - a TTM-trial substudy. PLoS One. 2017;12(1):e0168894.CrossRef Wiberg S, Hassager C, Stammet P, Winther-Jensen M, Thomsen JH, Erlinge D, et al. Single versus serial measurements of neuron-specific enolase and prediction of poor neurological outcome in persistently unconscious patients after out-of-hospital cardiac arrest - a TTM-trial substudy. PLoS One. 2017;12(1):e0168894.CrossRef
40.
go back to reference Ahn A, Yang J, Inigo-Santiago L, Parnia S. A feasibility study of cerebral oximetry monitoring during the post-resuscitation period in comatose patients following cardiac arrest. Resuscitation. 2014;85(4):522–6.CrossRef Ahn A, Yang J, Inigo-Santiago L, Parnia S. A feasibility study of cerebral oximetry monitoring during the post-resuscitation period in comatose patients following cardiac arrest. Resuscitation. 2014;85(4):522–6.CrossRef
41.
go back to reference Storm C, Leithner C, Krannich A, Wutzler A, Ploner CJ, Trenkmann L, et al. Regional cerebral oxygen saturation after cardiac arrest in 60 patients--a prospective outcome study. Resuscitation. 2014;85(8):1037–41.CrossRef Storm C, Leithner C, Krannich A, Wutzler A, Ploner CJ, Trenkmann L, et al. Regional cerebral oxygen saturation after cardiac arrest in 60 patients--a prospective outcome study. Resuscitation. 2014;85(8):1037–41.CrossRef
42.
go back to reference Steyerberg EW, Harrell FE, Jr., Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 2001;54(8):774–781.CrossRef Steyerberg EW, Harrell FE, Jr., Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 2001;54(8):774–781.CrossRef
Metadata
Title
A prediction model for good neurological outcome in successfully resuscitated out-of-hospital cardiac arrest patients
Authors
Ward Eertmans
Thao Mai Phuong Tran
Cornelia Genbrugge
Laurens Peene
Dieter Mesotten
Jo Dens
Frank Jans
Cathy De Deyne
Publication date
01-12-2018
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s13049-018-0558-2

Other articles of this Issue 1/2018

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2018 Go to the issue