Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2017

Open Access 01-12-2017 | Original research

Therapeutic hypothermia in patients with coagulopathy following severe traumatic brain injury

Authors: Toru Hifumi, Yasuhiro Kuroda, Kenya Kawakita, Susumu Yamashita, Yasutaka Oda, Kenji Dohi, Tsuyoshi Maekawa, on behalf of the Brain Hypothermia (B-HYPO) study group in Japan

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2017

Login to get access

Abstract

Background

Coagulopathy in traumatic brain injury (TBI) has been associated with poor neurological outcomes and higher in-hospital mortality. In general principle of trauma management, hypothermia should be prevented as it directly worsens coagulopathy. Therefore, we examined the safety of mild therapeutic hypothermia (MTH) in patients with coagulopathy following severe TBI.

Methods

We re-evaluated the brain hypothermia (B-HYPO) study data based on coagulopathy and compared the Glasgow Outcome Scale scores and survival rates at 6 months using per protocol analyses. Coagulopathy was defined as an activated partial thromboplastin time (APTT) > 60 s and/or fibrin/fibrinogen degradation product levels (FDP) > 90 μg/mL on admission. Baseline characteristics, coagulation parameters, and outcomes were compared between the control and MTH groups with or without coagulopathy.

Results

In patients with coagulopathy, 12 patients were allocated to the control group (35.5–37.0 °C) and 20 patients to the MTH group (32–34 °C). In patients without coagulopathy, 28 were allocated to the control group and 59 patients were allocated to the MTH group.
In patients with coagulopathy, favorable neurological outcomes and survival rates were comparable between the control and MTH groups (33.3% vs. 35.0%, P = 1.00; 50.0% vs. 60.0%, P = 0.72) with no difference in complication rates. On admission, no significant differences in APTT or FDP levels were observed between the two groups; however, APTT was significantly prolonged in the MTH group compared to the control group on day 3.

Discussion

Based on our study, MTH did not seem to negatively affect the outcomes in patients with coagulopathy following severe TBI on admission; therefore, the present study indicates that MTH may be applicable even in patients with severe TBI and coagulopathy.

Conclusions

Our study suggests that in comparison to control, MTH does not worsen the outcome of patients with coagulopathy following severe TBI.

Trial registration

UMIN-CTR, No. C000000231, Registered 13 September 2005.
Appendix
Available only for authorised users
Literature
1.
go back to reference Epstein DS, Mitra B, O'Reilly G, Rosenfeld JV, Cameron PA. Acute traumatic coagulopathy in the setting of isolated traumatic brain injury: a systematic review and meta-analysis. Injury. 2014;45(5):819–24.CrossRefPubMed Epstein DS, Mitra B, O'Reilly G, Rosenfeld JV, Cameron PA. Acute traumatic coagulopathy in the setting of isolated traumatic brain injury: a systematic review and meta-analysis. Injury. 2014;45(5):819–24.CrossRefPubMed
2.
go back to reference Harhangi BS, Kompanje EJ, Leebeek FW, Maas AI. Coagulation disorders after traumatic brain injury. Acta Neurochir. 2008;150(2):165–75. discussion 175CrossRefPubMed Harhangi BS, Kompanje EJ, Leebeek FW, Maas AI. Coagulation disorders after traumatic brain injury. Acta Neurochir. 2008;150(2):165–75. discussion 175CrossRefPubMed
3.
go back to reference Lustenberger T, Talving P, Kobayashi L, Barmparas G, Inaba K, Lam L, Branco BC, Demetriades D. Early coagulopathy after isolated severe traumatic brain injury: relationship with hypoperfusion challenged. J Trauma. 2010;69(6):1410–4.CrossRefPubMed Lustenberger T, Talving P, Kobayashi L, Barmparas G, Inaba K, Lam L, Branco BC, Demetriades D. Early coagulopathy after isolated severe traumatic brain injury: relationship with hypoperfusion challenged. J Trauma. 2010;69(6):1410–4.CrossRefPubMed
4.
go back to reference Talving P, Benfield R, Hadjizacharia P, Inaba K, Chan LS, Demetriades D. Coagulopathy in severe traumatic brain injury: a prospective study. J Trauma. 2009;66(1):55–61. discussion 61-52CrossRefPubMed Talving P, Benfield R, Hadjizacharia P, Inaba K, Chan LS, Demetriades D. Coagulopathy in severe traumatic brain injury: a prospective study. J Trauma. 2009;66(1):55–61. discussion 61-52CrossRefPubMed
5.
go back to reference Wafaisade A, Lefering R, Tjardes T, Wutzler S, Simanski C, Paffrath T, Fischer P, Bouillon B, Maegele M, Trauma Registry of DGU. Acute coagulopathy in isolated blunt traumatic brain injury. Neurocrit Care. 2010;12(2):211–9.CrossRefPubMed Wafaisade A, Lefering R, Tjardes T, Wutzler S, Simanski C, Paffrath T, Fischer P, Bouillon B, Maegele M, Trauma Registry of DGU. Acute coagulopathy in isolated blunt traumatic brain injury. Neurocrit Care. 2010;12(2):211–9.CrossRefPubMed
6.
go back to reference Chhabra G, Rangarajan K, Subramanian A, Agrawal D, Sharma S, Mukhopadhayay AK. Hypofibrinogenemia in isolated traumatic brain injury in Indian patients. Neurol India. 2010;58(5):756–7.CrossRefPubMed Chhabra G, Rangarajan K, Subramanian A, Agrawal D, Sharma S, Mukhopadhayay AK. Hypofibrinogenemia in isolated traumatic brain injury in Indian patients. Neurol India. 2010;58(5):756–7.CrossRefPubMed
7.
go back to reference Kearney TJ, Bentt L, Grode M, Lee S, Hiatt JR, Shabot MM. Coagulopathy and catecholamines in severe head injury. J Trauma. 1992;32(5):608–11. discussion 611-602CrossRefPubMed Kearney TJ, Bentt L, Grode M, Lee S, Hiatt JR, Shabot MM. Coagulopathy and catecholamines in severe head injury. J Trauma. 1992;32(5):608–11. discussion 611-602CrossRefPubMed
8.
go back to reference Endo A, Shiraishi A, Otomo Y, Kushimoto S, Saitoh D, Hayakawa M, Ogura H, Murata K, Hagiwara A, Sasaki J, et al. Development of novel criteria of the "lethal triad" as an indicator of decision making in current trauma care: a retrospective multicenter observational study in Japan. Crit Care Med. 2016;44(9):e797–803.CrossRefPubMed Endo A, Shiraishi A, Otomo Y, Kushimoto S, Saitoh D, Hayakawa M, Ogura H, Murata K, Hagiwara A, Sasaki J, et al. Development of novel criteria of the "lethal triad" as an indicator of decision making in current trauma care: a retrospective multicenter observational study in Japan. Crit Care Med. 2016;44(9):e797–803.CrossRefPubMed
9.
go back to reference Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med. 2009;37(7 Suppl):S186–202.CrossRefPubMed Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med. 2009;37(7 Suppl):S186–202.CrossRefPubMed
10.
go back to reference Polderman KH, Herold I. Therapeutic hypothermia and controlled normothermia in the intensive care unit: practical considerations, side effects, and cooling methods. Crit Care Med. 2009;37(3):1101–20.CrossRefPubMed Polderman KH, Herold I. Therapeutic hypothermia and controlled normothermia in the intensive care unit: practical considerations, side effects, and cooling methods. Crit Care Med. 2009;37(3):1101–20.CrossRefPubMed
11.
go back to reference Clifton GL, Miller ER, Choi SC, Levin HS, McCauley S, Smith KR Jr, Muizelaar JP, Wagner FC Jr, Marion DW, Luerssen TG, et al. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med. 2001;344(8):556–63.CrossRefPubMed Clifton GL, Miller ER, Choi SC, Levin HS, McCauley S, Smith KR Jr, Muizelaar JP, Wagner FC Jr, Marion DW, Luerssen TG, et al. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med. 2001;344(8):556–63.CrossRefPubMed
12.
go back to reference Clifton GL, Valadka A, Zygun D, Coffey CS, Drever P, Fourwinds S, Janis LS, Wilde E, Taylor P, Harshman K, et al. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: hypothermia II): a randomised trial. Lancet Neurol. 2011;10(2):131–9.CrossRefPubMed Clifton GL, Valadka A, Zygun D, Coffey CS, Drever P, Fourwinds S, Janis LS, Wilde E, Taylor P, Harshman K, et al. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: hypothermia II): a randomised trial. Lancet Neurol. 2011;10(2):131–9.CrossRefPubMed
13.
go back to reference Hutchison JS, Ward RE, Lacroix J, Hebert PC, Barnes MA, Bohn DJ, Dirks PB, Doucette S, Fergusson D, Gottesman R, et al. Hypothermia therapy after traumatic brain injury in children. N Engl J Med. 2008;358(23):2447–56.CrossRefPubMed Hutchison JS, Ward RE, Lacroix J, Hebert PC, Barnes MA, Bohn DJ, Dirks PB, Doucette S, Fergusson D, Gottesman R, et al. Hypothermia therapy after traumatic brain injury in children. N Engl J Med. 2008;358(23):2447–56.CrossRefPubMed
14.
go back to reference Cariou A, Payen JF, Asehnoune K, Audibert G, Botte A, Brissaud O, Debaty G, Deltour S, Deye N, Engrand N et al: Targeted temperature management in the ICU: Guidelines from a French expert panel. Anaesth Crit Care Pain Med. 2017. Cariou A, Payen JF, Asehnoune K, Audibert G, Botte A, Brissaud O, Debaty G, Deltour S, Deye N, Engrand N et al: Targeted temperature management in the ICU: Guidelines from a French expert panel. Anaesth Crit Care Pain Med. 2017.
15.
go back to reference Maekawa T, Yamashita S, Nagao S, Hayashi N, Ohashi Y. Prolonged mild therapeutic hypothermia versus fever control with tight hemodynamic monitoring and slow rewarming in patients with severe traumatic brain injury: a randomized controlled trial. J Neurotrauma. 2015;32(7):422–9.CrossRefPubMedPubMedCentral Maekawa T, Yamashita S, Nagao S, Hayashi N, Ohashi Y. Prolonged mild therapeutic hypothermia versus fever control with tight hemodynamic monitoring and slow rewarming in patients with severe traumatic brain injury: a randomized controlled trial. J Neurotrauma. 2015;32(7):422–9.CrossRefPubMedPubMedCentral
16.
go back to reference Andrews PJ, Sinclair HL, Rodriguez A, Harris BA, Battison CG, Rhodes JK, Murray GD. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med. 2015;373(25):2403–12.CrossRefPubMed Andrews PJ, Sinclair HL, Rodriguez A, Harris BA, Battison CG, Rhodes JK, Murray GD. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med. 2015;373(25):2403–12.CrossRefPubMed
17.
go back to reference Chang EF, Meeker M, Holland MC. Acute traumatic intraparenchymal hemorrhage: risk factors for progression in the early post-injury period. Neurosurgery. 2006;58(4):647–56. discussion 647-656CrossRefPubMed Chang EF, Meeker M, Holland MC. Acute traumatic intraparenchymal hemorrhage: risk factors for progression in the early post-injury period. Neurosurgery. 2006;58(4):647–56. discussion 647-656CrossRefPubMed
18.
go back to reference Brohi K, Cohen MJ, Davenport RA. Acute coagulopathy of trauma: mechanism, identification and effect. Curr Opin Crit Care. 2007;13(6):680–5.CrossRefPubMed Brohi K, Cohen MJ, Davenport RA. Acute coagulopathy of trauma: mechanism, identification and effect. Curr Opin Crit Care. 2007;13(6):680–5.CrossRefPubMed
19.
go back to reference Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245(5):812–8.CrossRefPubMedPubMedCentral Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245(5):812–8.CrossRefPubMedPubMedCentral
20.
21.
go back to reference Hifumi T, Kuroda Y, Kawakita K, Yamashita S, Oda Y, Dohi K, Maekawa T. Fever control management is preferable to mild therapeutic hypothermia in traumatic brain injury patients with abbreviated injury scale 3-4: a multi-center, randomized controlled trial. J Neurotrauma. 2016;33(11):1047–53.CrossRefPubMedPubMedCentral Hifumi T, Kuroda Y, Kawakita K, Yamashita S, Oda Y, Dohi K, Maekawa T. Fever control management is preferable to mild therapeutic hypothermia in traumatic brain injury patients with abbreviated injury scale 3-4: a multi-center, randomized controlled trial. J Neurotrauma. 2016;33(11):1047–53.CrossRefPubMedPubMedCentral
22.
go back to reference Sawamura A, Gando S, Hayakawa M, Hoshino H, Kubota N, Sugano M. Effects of antithrombin III in patients with disseminated intravascular coagulation diagnosed by newly developed diagnostic criteria for critical illness. Clin Appl Thromb Hemost. 2009;15(5):561–6.CrossRefPubMed Sawamura A, Gando S, Hayakawa M, Hoshino H, Kubota N, Sugano M. Effects of antithrombin III in patients with disseminated intravascular coagulation diagnosed by newly developed diagnostic criteria for critical illness. Clin Appl Thromb Hemost. 2009;15(5):561–6.CrossRefPubMed
23.
go back to reference Tokutomi T, Miyagi T, Morimoto K, Karukaya T, Shigemori M. Effect of hypothermia on serum electrolyte, inflammation, coagulation, and nutritional parameters in patients with severe traumatic brain injury. Neurocrit Care. 2004;1(2):171–82.CrossRefPubMed Tokutomi T, Miyagi T, Morimoto K, Karukaya T, Shigemori M. Effect of hypothermia on serum electrolyte, inflammation, coagulation, and nutritional parameters in patients with severe traumatic brain injury. Neurocrit Care. 2004;1(2):171–82.CrossRefPubMed
24.
go back to reference Sawamura A, Hayakawa M, Gando S, Kubota N, Sugano M, Wada T, Katabami K. Disseminated intravascular coagulation with a fibrinolytic phenotype at an early phase of trauma predicts mortality. Thromb Res. 2009;124(5):608–13.CrossRefPubMed Sawamura A, Hayakawa M, Gando S, Kubota N, Sugano M, Wada T, Katabami K. Disseminated intravascular coagulation with a fibrinolytic phenotype at an early phase of trauma predicts mortality. Thromb Res. 2009;124(5):608–13.CrossRefPubMed
25.
go back to reference Poller L. Standardization of the APTT test. Current status. Scand J Haematol Suppl. 1980;37:49–63.PubMed Poller L. Standardization of the APTT test. Current status. Scand J Haematol Suppl. 1980;37:49–63.PubMed
26.
go back to reference Wolberg AS, Meng ZH, Monroe DM 3rd, Hoffman M. A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. J Trauma. 2004;56(6):1221–8.CrossRefPubMed Wolberg AS, Meng ZH, Monroe DM 3rd, Hoffman M. A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. J Trauma. 2004;56(6):1221–8.CrossRefPubMed
27.
go back to reference Gando S, Sawamura A, Hayakawa M. Trauma, shock, and disseminated intravascular coagulation: lessons from the classical literature. Ann Surg. 2011;254(1):10–9.CrossRefPubMed Gando S, Sawamura A, Hayakawa M. Trauma, shock, and disseminated intravascular coagulation: lessons from the classical literature. Ann Surg. 2011;254(1):10–9.CrossRefPubMed
28.
go back to reference Sawamura A, Hayakawa M, Gando S, Kubota N, Sugano M, Wada T, Katabami K. Application of the Japanese Association for Acute Medicine disseminated intravascular coagulation diagnostic criteria for patients at an early phase of trauma. Thromb Res. 2009;124(6):706–10.CrossRefPubMed Sawamura A, Hayakawa M, Gando S, Kubota N, Sugano M, Wada T, Katabami K. Application of the Japanese Association for Acute Medicine disseminated intravascular coagulation diagnostic criteria for patients at an early phase of trauma. Thromb Res. 2009;124(6):706–10.CrossRefPubMed
29.
go back to reference Zhang D, Gong S, Jin H, Wang J, Sheng P, Zou W, Dong Y, Hou L. Coagulation parameters and risk of progressive hemorrhagic injury after traumatic brain injury: a systematic review and meta-analysis. Biomed Res Int. 2015;2015:261825.PubMedPubMedCentral Zhang D, Gong S, Jin H, Wang J, Sheng P, Zou W, Dong Y, Hou L. Coagulation parameters and risk of progressive hemorrhagic injury after traumatic brain injury: a systematic review and meta-analysis. Biomed Res Int. 2015;2015:261825.PubMedPubMedCentral
Metadata
Title
Therapeutic hypothermia in patients with coagulopathy following severe traumatic brain injury
Authors
Toru Hifumi
Yasuhiro Kuroda
Kenya Kawakita
Susumu Yamashita
Yasutaka Oda
Kenji Dohi
Tsuyoshi Maekawa
on behalf of the Brain Hypothermia (B-HYPO) study group in Japan
Publication date
01-12-2017
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s13049-017-0465-y

Other articles of this Issue 1/2017

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2017 Go to the issue