Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2017

Open Access 01-12-2017 | Original research

Intraosseous blood samples for point-of-care analysis: agreement between intraosseous and arterial analyses

Authors: Milla Jousi, Simo Saikko, Jouni Nurmi

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2017

Login to get access

Abstract

Background

Point-of-care (POC) testing is highly useful when treating critically ill patients. In case of difficult vascular access, the intraosseous (IO) route is commonly used, and blood is aspirated to confirm the correct position of the IO-needle. Thus, IO blood samples could be easily accessed for POC analyses in emergency situations. The aim of this study was to determine whether IO values agree sufficiently with arterial values to be used for clinical decision making.

Methods

Two samples of IO blood were drawn from 31 healthy volunteers and compared with arterial samples. The samples were analysed for sodium, potassium, ionized calcium, glucose, haemoglobin, haematocrit, pH, blood gases, base excess, bicarbonate, and lactate using the i-STAT® POC device. Agreement and reliability were estimated by using the Bland-Altman method and intraclass correlation coefficient calculations.

Results

Good agreement was evident between the IO and arterial samples for pH, glucose, and lactate. Potassium levels were clearly higher in the IO samples than those from arterial blood. Base excess and bicarbonate were slightly higher, and sodium and ionised calcium values were slightly lower, in the IO samples compared with the arterial values. The blood gases in the IO samples were between arterial and venous values. Haemoglobin and haematocrit showed remarkable variation in agreement.

Discussion

POC diagnostics of IO blood can be a useful tool to guide treatment in critical emergency care. Seeking out the reversible causes of cardiac arrest or assessing the severity of shock are examples of situations in which obtaining vascular access and blood samples can be difficult, though information about the electrolytes, acid-base balance, and lactate could guide clinical decision making.
The analysis of IO samples should though be limited to situations in which no other option is available, and the results should be interpreted with caution, because there is not yet enough scientific evidence regarding the agreement of IO and arterial results among unstable patients.

Conclusions

IO blood samples are suitable for analysis with the i-STAT® point-of-care device in emergency care. The aspirate used to confirm the correct placement of the IO needle can also be used for analysis. The results must be interpreted within a clinical context while taking the magnitude and direction of bias into account.
Literature
1.
go back to reference Soar J, Nolan JP, Böttiger BW et al. European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation 2015;95:100-147. Soar J, Nolan JP, Böttiger BW et al. European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation 2015;95:100-147.
2.
go back to reference Eriksson M, Strandberg G, Lipcsey M, Larsson A. Troponin I can be determined in Intraosseous aspirates in a porcine shock model. Clin Lab. 2015;61(7):825–9.PubMed Eriksson M, Strandberg G, Lipcsey M, Larsson A. Troponin I can be determined in Intraosseous aspirates in a porcine shock model. Clin Lab. 2015;61(7):825–9.PubMed
3.
go back to reference Strandberg G, Lipcsey M, Eriksson M, Larsson A. Intraosseous samples can be used for creatinine measurements - an experimental study in the anaesthetised pig. Clin Lab. 2014;60(10):1587–91.PubMed Strandberg G, Lipcsey M, Eriksson M, Larsson A. Intraosseous samples can be used for creatinine measurements - an experimental study in the anaesthetised pig. Clin Lab. 2014;60(10):1587–91.PubMed
4.
go back to reference Veldhoen ES, De Vooght K, Slieker MG, Versluys AB, Turner N. Analysis of bloodgas, electrolytes and glucose from intraosseous samples using an i-STAT point-of-care analyser. Resuscitation. 2014;85:359–63.CrossRefPubMed Veldhoen ES, De Vooght K, Slieker MG, Versluys AB, Turner N. Analysis of bloodgas, electrolytes and glucose from intraosseous samples using an i-STAT point-of-care analyser. Resuscitation. 2014;85:359–63.CrossRefPubMed
5.
go back to reference Strandberg G, Larsson A, Lipcsey M, Berglund L, Eriksson M. Analysis of intraosseous samples in endotoxemic shock – an experimental study in the anaesthetised pig. Acta Anaesthesiol Scand. 2014;58:337–44.CrossRefPubMed Strandberg G, Larsson A, Lipcsey M, Berglund L, Eriksson M. Analysis of intraosseous samples in endotoxemic shock – an experimental study in the anaesthetised pig. Acta Anaesthesiol Scand. 2014;58:337–44.CrossRefPubMed
6.
go back to reference Larsson T, Strandberg G, Eriksson M, Bondesson U, Lipcsey M, Larsson A. Intraosseous samples can be used for opioid measurements - an experimental study in the anaesthetized pig. Scand J Clin Lab Invest. 2013;73:102–6.CrossRefPubMed Larsson T, Strandberg G, Eriksson M, Bondesson U, Lipcsey M, Larsson A. Intraosseous samples can be used for opioid measurements - an experimental study in the anaesthetized pig. Scand J Clin Lab Invest. 2013;73:102–6.CrossRefPubMed
7.
go back to reference Strandberg G, Eriksson M, Gustafsson MG, Lipcsey M, Larsson A. Analysis of intraosseous samples using point of care technology - an experimental study in the anaeshetised pig. Resuscitation. 2012;83:1381–5.CrossRefPubMed Strandberg G, Eriksson M, Gustafsson MG, Lipcsey M, Larsson A. Analysis of intraosseous samples using point of care technology - an experimental study in the anaeshetised pig. Resuscitation. 2012;83:1381–5.CrossRefPubMed
8.
go back to reference Miller LJ, Philbeck TE, Montez D, Spadaccini CJ. A new study of Intraosseous blood for laboratory analysis. Arch Pathol Lab Med. 2010;134:1253–60.PubMed Miller LJ, Philbeck TE, Montez D, Spadaccini CJ. A new study of Intraosseous blood for laboratory analysis. Arch Pathol Lab Med. 2010;134:1253–60.PubMed
9.
go back to reference Greco SC, Talcott MR, LaRegine MC, Eisenbeis PE. Use of intraosseous blood for repeated hematologic and biochemical analyses in healthy pigs. Am J Vet Res. 2001;62:43–7.CrossRefPubMed Greco SC, Talcott MR, LaRegine MC, Eisenbeis PE. Use of intraosseous blood for repeated hematologic and biochemical analyses in healthy pigs. Am J Vet Res. 2001;62:43–7.CrossRefPubMed
10.
go back to reference Hurren JS. Can blood taken from intraosseous cannulations be used for blood analysis? Burns. 2000;26:727–30.CrossRefPubMed Hurren JS. Can blood taken from intraosseous cannulations be used for blood analysis? Burns. 2000;26:727–30.CrossRefPubMed
11.
go back to reference Voelckel WG, Lindner KH, Wenzel V, et al. Intraosseous blood gases during hypothermia: correlation with arterial, mixed venous, and sagittal sinus blood. Crit Care Med. 2000;28:2915–20.CrossRefPubMed Voelckel WG, Lindner KH, Wenzel V, et al. Intraosseous blood gases during hypothermia: correlation with arterial, mixed venous, and sagittal sinus blood. Crit Care Med. 2000;28:2915–20.CrossRefPubMed
12.
go back to reference Abdelmoneim T, Kissoon N, Johnson L, Fiallos M, Murphy S. Acid-base status of blood from intraosseous and mixed venous sites during prolonged cardiopulmonary resuscitation and drug infusions. Crit Care Med. 1999;27:1923–8.CrossRefPubMed Abdelmoneim T, Kissoon N, Johnson L, Fiallos M, Murphy S. Acid-base status of blood from intraosseous and mixed venous sites during prolonged cardiopulmonary resuscitation and drug infusions. Crit Care Med. 1999;27:1923–8.CrossRefPubMed
13.
go back to reference Kissoon N, Idris A, Wenzel V, Murphy S, Rush W. Intraosseous and central venous blood acid-base relationship during cardiopulmonary resuscitation. Ped Emerg Care. 1997;13:250–3.CrossRef Kissoon N, Idris A, Wenzel V, Murphy S, Rush W. Intraosseous and central venous blood acid-base relationship during cardiopulmonary resuscitation. Ped Emerg Care. 1997;13:250–3.CrossRef
14.
go back to reference Ummenhofer W, Frei FJ, Urwyler A, Drewe J. Are laboratory values in bone marrow aspirate predictable for venous blood in paediatric patients? Resuscitation. 1994;27:123–8.CrossRefPubMed Ummenhofer W, Frei FJ, Urwyler A, Drewe J. Are laboratory values in bone marrow aspirate predictable for venous blood in paediatric patients? Resuscitation. 1994;27:123–8.CrossRefPubMed
15.
go back to reference Kissoon N, Peterson R, Murphy S, Gayle M, Ceithaml E, Harwood-Nuss A. Comparison of pH and carbon dioxide tension values of central venous and intraosseous blood during changes in cardiac output. Crit Care Med. 1994;22:1010–5.CrossRefPubMed Kissoon N, Peterson R, Murphy S, Gayle M, Ceithaml E, Harwood-Nuss A. Comparison of pH and carbon dioxide tension values of central venous and intraosseous blood during changes in cardiac output. Crit Care Med. 1994;22:1010–5.CrossRefPubMed
16.
go back to reference Kissoon N, Rosenberg H, Gloor J, Vidal R. Comparison of the acid-base status of blood obtained from intraosseous and central venous sites during steady- and low-flow states. Crit Care Med. 1993;21:1765–9.CrossRefPubMed Kissoon N, Rosenberg H, Gloor J, Vidal R. Comparison of the acid-base status of blood obtained from intraosseous and central venous sites during steady- and low-flow states. Crit Care Med. 1993;21:1765–9.CrossRefPubMed
17.
go back to reference Brickman KR, Krupp K, Rega P, Alexander J, Guinness M. Typing and screening of blood from Intraosseous access. Ann Emerg Med. 1992;21:414–7.CrossRefPubMed Brickman KR, Krupp K, Rega P, Alexander J, Guinness M. Typing and screening of blood from Intraosseous access. Ann Emerg Med. 1992;21:414–7.CrossRefPubMed
18.
go back to reference Grisham J, Hastings C. Bone marrow aspirate as an accessible and reliable source for critical laboratory studies. Ann Emerg Med. 1991;20:1121–4.CrossRefPubMed Grisham J, Hastings C. Bone marrow aspirate as an accessible and reliable source for critical laboratory studies. Ann Emerg Med. 1991;20:1121–4.CrossRefPubMed
19.
go back to reference Orlowski JP, Porembka DT, Gallagher JM, Van Lente F. The bone marrow as a source of laboratory studies. Ann Emerg Med. 1989;18:1348–51.CrossRefPubMed Orlowski JP, Porembka DT, Gallagher JM, Van Lente F. The bone marrow as a source of laboratory studies. Ann Emerg Med. 1989;18:1348–51.CrossRefPubMed
20.
go back to reference Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.CrossRefPubMed Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.CrossRefPubMed
21.
go back to reference Hanneman SK. Design, analysis and interpretation of method-comparison studies. Adv Crit Care. 2008;19(2):223–34. Hanneman SK. Design, analysis and interpretation of method-comparison studies. Adv Crit Care. 2008;19(2):223–34.
22.
go back to reference Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–60.CrossRefPubMed Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–60.CrossRefPubMed
23.
go back to reference Bland JM, Altman DG. Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet. 1995;346:1085–7.CrossRefPubMed Bland JM, Altman DG. Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet. 1995;346:1085–7.CrossRefPubMed
24.
go back to reference Koo TK, Li MY. A guideline of selecting and reporting Intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.CrossRefPubMedPubMedCentral Koo TK, Li MY. A guideline of selecting and reporting Intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.CrossRefPubMedPubMedCentral
25.
go back to reference Kottner J, Audigé L, Brorson S, Donner A, Gajewski BJ, Hróbjartsson A, et al. Guidelines for reporting reliability and agreement studies (GRRAS) were proposed. J Clin Epidemiol. 2011;64(1):96–106.CrossRefPubMed Kottner J, Audigé L, Brorson S, Donner A, Gajewski BJ, Hróbjartsson A, et al. Guidelines for reporting reliability and agreement studies (GRRAS) were proposed. J Clin Epidemiol. 2011;64(1):96–106.CrossRefPubMed
26.
go back to reference Bland JM, Altman DG. A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement. Comput Biol Med. 1990;20(5):337–40.CrossRefPubMed Bland JM, Altman DG. A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement. Comput Biol Med. 1990;20(5):337–40.CrossRefPubMed
Metadata
Title
Intraosseous blood samples for point-of-care analysis: agreement between intraosseous and arterial analyses
Authors
Milla Jousi
Simo Saikko
Jouni Nurmi
Publication date
01-12-2017
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s13049-017-0435-4

Other articles of this Issue 1/2017

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2017 Go to the issue