Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2016

Open Access 01-12-2016 | Original research

Outcomes after helicopter versus ground emergency medical services for major trauma--propensity score and instrumental variable analyses: a retrospective nationwide cohort study

Authors: Asuka Tsuchiya, Yusuke Tsutsumi, Hideo Yasunaga

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2016

Login to get access

Abstract

Background

Because of a lack of randomized controlled trials and the methodological weakness of currently available observational studies, the benefits of helicopter emergency medical services (HEMS) over ground emergency medical services (GEMS) for major trauma patients remain uncertain. The aim of this retrospective nationwide cohort study was to compare the mortality of adults with serious traumatic injuries who were transported by HEMS and GEMS, and to analyze the effects of HEMS in various subpopulations.

Methods

Using the Japan Trauma Data Bank, we evaluated all adult patients who had an injury severity score ≥ 16 transported by HEMS or GEMS during the daytime between 2004 and 2014. We compared in-hospital mortality between patients transported by HEMS and GEMS using propensity score matching, inverse probability of treatment weighting and instrumental variable analyses to adjust for measured and unmeasured confounding factors.

Results

Eligible patients (n = 21,286) from 192 hospitals included 4128 transported by HEMS and 17,158 transported by GEMS. In the propensity score-matched model, there was a significant difference in the in-hospital mortality between HEMS and GEMS groups (22.2 vs. 24.5%, risk difference −2.3% [95% confidence interval, −4.2 to −0.5]; number needed to treat, 43 [95% confidence interval, 24 to 220]). The inverse probability of treatment weighting (20.8% vs. 23.9%; risk difference, −3.9% [95% confidence interval, −5.7 to −2.1]; number needed to treat, 26 [95% confidence interval, 17 to 48]) and instrumental variable analyses showed similar results (risk difference, −6.5% [95% confidence interval, −9.2 to −3.8]; number needed to treat, 15 [95% confidence interval, 11 to 27]). HEMS transport was significantly associated with lower in-hospital mortality after falls, compression injuries, severe chest injuries, extremity (including pelvic) injuries, and traumatic arrest on arrival to the emergency department.

Conclusions

HEMS was associated with a significantly lower mortality than GEMS in adult patients with major traumatic injuries after adjusting for measured and unmeasured confounders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Seegerer K. 10 years of the Munich Emergency Medical Service: organization and technic. MMW Muenchener Med Wochenschr. 1976;118:573–8. Seegerer K. 10 years of the Munich Emergency Medical Service: organization and technic. MMW Muenchener Med Wochenschr. 1976;118:573–8.
2.
go back to reference Butler DP, Anwar I, Willett K. Is it the H or the EMS in HEMS that has an impact on trauma patient mortality? A systematic review of the evidence. Emerg Med J. 2010;27:692–701.CrossRefPubMed Butler DP, Anwar I, Willett K. Is it the H or the EMS in HEMS that has an impact on trauma patient mortality? A systematic review of the evidence. Emerg Med J. 2010;27:692–701.CrossRefPubMed
3.
go back to reference Galvagno SM, Sikorski R, Hirshon JM, Floccare D, Stephens C, Beecher D, et al. Helicopter emergency medical services for adults with major trauma. Cochrane Database Syst Rev. 2015;12:CD009228. Galvagno SM, Sikorski R, Hirshon JM, Floccare D, Stephens C, Beecher D, et al. Helicopter emergency medical services for adults with major trauma. Cochrane Database Syst Rev. 2015;12:CD009228.
4.
go back to reference Brown JB, Forsythe RM, Stassen NA, Gestring ML. The National Trauma Triage Protocol: can this tool predict which patients with trauma will benefit from helicopter transport? J Trauma Acute Care Surg. 2012;73:319–25.CrossRefPubMed Brown JB, Forsythe RM, Stassen NA, Gestring ML. The National Trauma Triage Protocol: can this tool predict which patients with trauma will benefit from helicopter transport? J Trauma Acute Care Surg. 2012;73:319–25.CrossRefPubMed
5.
go back to reference Andruszkow H, Lefering R, Frink M, Mommsen P, Zeckey C, Rahe K, et al. Survival benefit of helicopter emergency medical services compared to ground emergency medical services in traumatized patients. Crit Care. 2013;17:R124.CrossRefPubMedPubMedCentral Andruszkow H, Lefering R, Frink M, Mommsen P, Zeckey C, Rahe K, et al. Survival benefit of helicopter emergency medical services compared to ground emergency medical services in traumatized patients. Crit Care. 2013;17:R124.CrossRefPubMedPubMedCentral
6.
go back to reference Galvagno SM, Haut ER, Zafar SN, Millin MG, Efron DT, Koenig GJ, et al. Association between helicopter vs ground emergency medical services and survival for adults with major trauma. JAMA. 2012;307:1602–10.CrossRefPubMedPubMedCentral Galvagno SM, Haut ER, Zafar SN, Millin MG, Efron DT, Koenig GJ, et al. Association between helicopter vs ground emergency medical services and survival for adults with major trauma. JAMA. 2012;307:1602–10.CrossRefPubMedPubMedCentral
7.
go back to reference Stewart KE, Cowan LD, Thompson DM, Sacra JC, Albrecht R. Association of direct helicopter versus ground transport and in-hospital mortality in trauma patients: a propensity score analysis. Acad Emerg Med. 2011;18:1208–16.CrossRefPubMed Stewart KE, Cowan LD, Thompson DM, Sacra JC, Albrecht R. Association of direct helicopter versus ground transport and in-hospital mortality in trauma patients: a propensity score analysis. Acad Emerg Med. 2011;18:1208–16.CrossRefPubMed
8.
go back to reference Abe T, Takahashi O, Saitoh D, Tokuda Y. Association between helicopter with physician versus ground emergency medical services and survival of adults with major trauma in Japan. Crit Care. 2014;18:R146.CrossRefPubMedPubMedCentral Abe T, Takahashi O, Saitoh D, Tokuda Y. Association between helicopter with physician versus ground emergency medical services and survival of adults with major trauma in Japan. Crit Care. 2014;18:R146.CrossRefPubMedPubMedCentral
9.
go back to reference Bekelis K, Missios S, Mackenzie TA. Prehospital helicopter transport and survival of patients with traumatic brain injury. Ann Surg. 2015;261:579–85.CrossRefPubMedPubMedCentral Bekelis K, Missios S, Mackenzie TA. Prehospital helicopter transport and survival of patients with traumatic brain injury. Ann Surg. 2015;261:579–85.CrossRefPubMedPubMedCentral
10.
go back to reference Brown JB, Gestring ML, Stassen NA, Forsythe RM, Billiar TR, Peitzman AB, et al. Geographic variation in outcome benefits of helicopter transport for trauma in the United States: a retrospective cohort study. Ann Surg. 2016;263:406–12.CrossRefPubMed Brown JB, Gestring ML, Stassen NA, Forsythe RM, Billiar TR, Peitzman AB, et al. Geographic variation in outcome benefits of helicopter transport for trauma in the United States: a retrospective cohort study. Ann Surg. 2016;263:406–12.CrossRefPubMed
11.
go back to reference Brown JB, Gestring ML, Guyette FX, Rosengart MR, Stassen NA, Forsythe RM, et al. Helicopter transport improves survival following injury in the absence of a time-saving advantage. Surgery. 2016;159:947–59.CrossRefPubMed Brown JB, Gestring ML, Guyette FX, Rosengart MR, Stassen NA, Forsythe RM, et al. Helicopter transport improves survival following injury in the absence of a time-saving advantage. Surgery. 2016;159:947–59.CrossRefPubMed
12.
go back to reference Talving P, Teixeira PGR, Barmparas G, DuBose J, Inaba K, Lam L, et al. Helicopter evacuation of trauma victims in Los Angeles: does it improve survival? World J Surg. 2009;33:2469–76.CrossRefPubMed Talving P, Teixeira PGR, Barmparas G, DuBose J, Inaba K, Lam L, et al. Helicopter evacuation of trauma victims in Los Angeles: does it improve survival? World J Surg. 2009;33:2469–76.CrossRefPubMed
13.
go back to reference Sullivent EE, Faul M, Wald MM. Reduced mortality in injured adults transported by helicopter emergency medical services. Prehospital Emerg Care Off J Natl Assoc EMS Physicians Natl Assoc State EMS Dir. 2011;15:295–302.CrossRef Sullivent EE, Faul M, Wald MM. Reduced mortality in injured adults transported by helicopter emergency medical services. Prehospital Emerg Care Off J Natl Assoc EMS Physicians Natl Assoc State EMS Dir. 2011;15:295–302.CrossRef
14.
go back to reference Newgard CD, Schmicker RH, Hedges JR, Trickett JP, Davis DP, Bulger EM, et al. Emergency medical services intervals and survival in trauma: assessment of the “golden hour” in a North American prospective cohort. Ann Emerg Med. 2010;55:235–46. e4.CrossRefPubMed Newgard CD, Schmicker RH, Hedges JR, Trickett JP, Davis DP, Bulger EM, et al. Emergency medical services intervals and survival in trauma: assessment of the “golden hour” in a North American prospective cohort. Ann Emerg Med. 2010;55:235–46. e4.CrossRefPubMed
15.
go back to reference Timm A, Maegele M, Lefering R, Wendt K, Wyen H. TraumaRegister DGU(®). Pre-hospital rescue times and actions in severe trauma. A comparison between two trauma systems: Germany and the Netherlands. Injury. 2014;45 Suppl 3:S43–52.CrossRefPubMed Timm A, Maegele M, Lefering R, Wendt K, Wyen H. TraumaRegister DGU(®). Pre-hospital rescue times and actions in severe trauma. A comparison between two trauma systems: Germany and the Netherlands. Injury. 2014;45 Suppl 3:S43–52.CrossRefPubMed
16.
go back to reference Den Hartog D, Romeo J, Ringburg AN, Verhofstad MHJ, Van Lieshout EMM. Survival benefit of physician-staffed Helicopter Emergency Medical Services (HEMS) assistance for severely injured patients. Injury. 2015;46:1281–6.CrossRef Den Hartog D, Romeo J, Ringburg AN, Verhofstad MHJ, Van Lieshout EMM. Survival benefit of physician-staffed Helicopter Emergency Medical Services (HEMS) assistance for severely injured patients. Injury. 2015;46:1281–6.CrossRef
17.
go back to reference Janssen DJ, Burns BJ. Experience of pre-hospital treatment of survivors of falls-related trauma by an Australian helicopter emergency medical service. Injury. 2013;44:624–8.CrossRefPubMed Janssen DJ, Burns BJ. Experience of pre-hospital treatment of survivors of falls-related trauma by an Australian helicopter emergency medical service. Injury. 2013;44:624–8.CrossRefPubMed
18.
go back to reference Bledsoe BE, Wesley AK, Eckstein M, Dunn TM, O’Keefe MF. Helicopter scene transport of trauma patients with nonlife-threatening injuries: a meta-analysis. J Trauma. 2006;60:1257–65.CrossRefPubMed Bledsoe BE, Wesley AK, Eckstein M, Dunn TM, O’Keefe MF. Helicopter scene transport of trauma patients with nonlife-threatening injuries: a meta-analysis. J Trauma. 2006;60:1257–65.CrossRefPubMed
19.
go back to reference Delgado MK, Staudenmayer KL, Wang NE, Spain DA, Weir S, Owens DK, et al. Cost-effectiveness of helicopter versus ground emergency medical services for trauma scene transport in the United States. Ann Emerg Med. 2013;62:351–64. e19.CrossRefPubMedPubMedCentral Delgado MK, Staudenmayer KL, Wang NE, Spain DA, Weir S, Owens DK, et al. Cost-effectiveness of helicopter versus ground emergency medical services for trauma scene transport in the United States. Ann Emerg Med. 2013;62:351–64. e19.CrossRefPubMedPubMedCentral
20.
go back to reference Vercruysse GA, Friese RS, Khalil M, Ibrahim-Zada I, Zangbar B, Hashmi A, et al. Overuse of helicopter transport in the minimally injured: a health care system problem that should be corrected. J Trauma Acute Care Surg. 2015;78:510–5.CrossRefPubMed Vercruysse GA, Friese RS, Khalil M, Ibrahim-Zada I, Zangbar B, Hashmi A, et al. Overuse of helicopter transport in the minimally injured: a health care system problem that should be corrected. J Trauma Acute Care Surg. 2015;78:510–5.CrossRefPubMed
23.
go back to reference Tagami T, Matsui H, Horiguchi H, Fushimi K, Yasunaga H. Antithrombin and mortality in severe pneumonia patients with sepsis-associated disseminated intravascular coagulation: an observational nationwide study. J Thromb Haemost. 2014;12:1470–9.CrossRefPubMed Tagami T, Matsui H, Horiguchi H, Fushimi K, Yasunaga H. Antithrombin and mortality in severe pneumonia patients with sepsis-associated disseminated intravascular coagulation: an observational nationwide study. J Thromb Haemost. 2014;12:1470–9.CrossRefPubMed
25.
go back to reference Champion HR, Copes WS, Sacco WJ, Lawnick MM, Keast SL, Bain LW, et al. The major trauma outcome study: establishing national norms for trauma care. J Trauma. 1990;30:1356–65.CrossRefPubMed Champion HR, Copes WS, Sacco WJ, Lawnick MM, Keast SL, Bain LW, et al. The major trauma outcome study: establishing national norms for trauma care. J Trauma. 1990;30:1356–65.CrossRefPubMed
26.
go back to reference Rosenbaum PR, Rubin DB. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am Stat. 1985;39:33–8. Rosenbaum PR, Rubin DB. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am Stat. 1985;39:33–8.
27.
go back to reference Griswold ME, Localio AR, Mulrow C. Propensity score adjustment with multilevel data: setting your sites on decreasing selection bias. Ann Intern Med. 2010;152:393–5.CrossRefPubMed Griswold ME, Localio AR, Mulrow C. Propensity score adjustment with multilevel data: setting your sites on decreasing selection bias. Ann Intern Med. 2010;152:393–5.CrossRefPubMed
28.
go back to reference Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat Med. 2008;27:2037–49.CrossRefPubMed Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat Med. 2008;27:2037–49.CrossRefPubMed
29.
go back to reference Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stat Med. 2014;33:1242–58.CrossRefPubMed Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stat Med. 2014;33:1242–58.CrossRefPubMed
30.
go back to reference Austin PC. Using the standardized difference to compare the prevalence of a binary variable between two groups in observational research. Commun Stat - Simul Comput. 2009;38:1228–34.CrossRef Austin PC. Using the standardized difference to compare the prevalence of a binary variable between two groups in observational research. Commun Stat - Simul Comput. 2009;38:1228–34.CrossRef
31.
go back to reference Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiol Camb Mass. 2000;11:550–60.CrossRef Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiol Camb Mass. 2000;11:550–60.CrossRef
32.
go back to reference Hernán MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiol Camb Mass. 2000;11:561–70.CrossRef Hernán MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiol Camb Mass. 2000;11:561–70.CrossRef
34.
go back to reference Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol. 2000;29:722–9.CrossRefPubMed Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol. 2000;29:722–9.CrossRefPubMed
35.
go back to reference Brookhart MA, Wang PS, Solomon DH, Schneeweiss S. Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable. Epidemiol Camb Mass. 2006;17:268–75.CrossRef Brookhart MA, Wang PS, Solomon DH, Schneeweiss S. Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable. Epidemiol Camb Mass. 2006;17:268–75.CrossRef
36.
go back to reference Schneeweiss S, Solomon DH, Wang PS, Rassen J, Brookhart MA. Simultaneous assessment of short-term gastrointestinal benefits and cardiovascular risks of selective cyclooxygenase 2 inhibitors and nonselective nonsteroidal antiinflammatory drugs: an instrumental variable analysis. Arthritis Rheum. 2006;54:3390–8.CrossRefPubMed Schneeweiss S, Solomon DH, Wang PS, Rassen J, Brookhart MA. Simultaneous assessment of short-term gastrointestinal benefits and cardiovascular risks of selective cyclooxygenase 2 inhibitors and nonselective nonsteroidal antiinflammatory drugs: an instrumental variable analysis. Arthritis Rheum. 2006;54:3390–8.CrossRefPubMed
37.
go back to reference Brookhart MA, Schneeweiss S. Preference-based instrumental variable methods for the estimation of treatment effects: assessing validity and interpreting results. Int J Biostat. 2007;3:Article 14.CrossRefPubMed Brookhart MA, Schneeweiss S. Preference-based instrumental variable methods for the estimation of treatment effects: assessing validity and interpreting results. Int J Biostat. 2007;3:Article 14.CrossRefPubMed
38.
go back to reference Staiger D, Stock JH. Instrumental variables regression with weak instruments. Econometrica. 1997;65:557–86.CrossRef Staiger D, Stock JH. Instrumental variables regression with weak instruments. Econometrica. 1997;65:557–86.CrossRef
39.
go back to reference Tan H-J, Norton EC, Ye Z, Hafez KS, Gore JL, Miller DC. Long-term survival following partial vs radical nephrectomy among older patients with early-stage kidney cancer. JAMA. 2012;307:1629–35.CrossRefPubMed Tan H-J, Norton EC, Ye Z, Hafez KS, Gore JL, Miller DC. Long-term survival following partial vs radical nephrectomy among older patients with early-stage kidney cancer. JAMA. 2012;307:1629–35.CrossRefPubMed
40.
go back to reference Dunn OJ. Multiple comparisons among means. J Am Stat Assoc. 1961;56:52–64.CrossRef Dunn OJ. Multiple comparisons among means. J Am Stat Assoc. 1961;56:52–64.CrossRef
41.
go back to reference Garner A, Rashford S, Lee A, Bartolacci R. Addition of physicians to paramedic helicopter services decreases blunt trauma mortality. Aust N Z J Surg. 1999;69:697–701.CrossRefPubMed Garner A, Rashford S, Lee A, Bartolacci R. Addition of physicians to paramedic helicopter services decreases blunt trauma mortality. Aust N Z J Surg. 1999;69:697–701.CrossRefPubMed
42.
go back to reference Ringburg AN, Thomas SH, Steyerberg EW, van Lieshout EMM, Patka P, Schipper IB. Lives saved by helicopter emergency medical services: an overview of literature. Air Med J. 2009;28:298–302.CrossRefPubMed Ringburg AN, Thomas SH, Steyerberg EW, van Lieshout EMM, Patka P, Schipper IB. Lives saved by helicopter emergency medical services: an overview of literature. Air Med J. 2009;28:298–302.CrossRefPubMed
43.
go back to reference Gearhart PA, Wuerz R, Localio AR. Cost-effectiveness analysis of helicopter EMS for trauma patients. Ann Emerg Med. 1997;30:500–6.CrossRefPubMed Gearhart PA, Wuerz R, Localio AR. Cost-effectiveness analysis of helicopter EMS for trauma patients. Ann Emerg Med. 1997;30:500–6.CrossRefPubMed
44.
go back to reference Brown JB, Sperry JL, Fombona A, Billiar TR, Peitzman AB, Guyette FX. Pre-trauma center red blood cell transfusion is associated with improved early outcomes in air medical trauma patients. J Am Coll Surg. 2015;220:797–808.CrossRefPubMedPubMedCentral Brown JB, Sperry JL, Fombona A, Billiar TR, Peitzman AB, Guyette FX. Pre-trauma center red blood cell transfusion is associated with improved early outcomes in air medical trauma patients. J Am Coll Surg. 2015;220:797–808.CrossRefPubMedPubMedCentral
Metadata
Title
Outcomes after helicopter versus ground emergency medical services for major trauma--propensity score and instrumental variable analyses: a retrospective nationwide cohort study
Authors
Asuka Tsuchiya
Yusuke Tsutsumi
Hideo Yasunaga
Publication date
01-12-2016
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s13049-016-0335-z

Other articles of this Issue 1/2016

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2016 Go to the issue