Skip to main content
Top
Published in: Journal of Ovarian Research 1/2018

Open Access 01-12-2018 | Research

Luteolin sensitizes the antitumor effect of cisplatin in drug-resistant ovarian cancer via induction of apoptosis and inhibition of cell migration and invasion

Authors: Haixia Wang, Youjun Luo, Tiankui Qiao, Zhaoxia Wu, Zhonghua Huang

Published in: Journal of Ovarian Research | Issue 1/2018

Login to get access

Abstract

Luteolin, a polyphenolic flavone, has been demonstrated to exert anti-tumor activity in various cancer types. Cisplatin drug resistance is a major obstacle in the management of ovarian cancer. In the present study, we investigated the chemo-sensitizing effect of luteolin in both cisplatin-resistant ovarian cancer cell line and a mice xenotransplant model. In vitro, CCK-8 assay showed that luteolin inhibited cell proliferation in a dose-dependent manner, and luteolin enhanced anti-proliferation effect of cisplatin on cisplatin-resistant ovarian cancer CAOV3/DDP cells. Flow cytometry revealed that luteolin enhanced cell apoptosis in combination with cisplatin. Western blotting and qRT-PCR assay revealed that luteolin increased cisplatin-induced downregulation of Bcl-2 expression. In addition, wound-healing assay and Matrigel invasion assay showed that luteolin and cisplatin synergistically inhibited migration and invasion of CAOV3/DDP cells. Moreover, in vivo, luteolin enhanced cisplatin-induced reduction of tumor growth as well as induction of apoptosis. We suggest that luteolin in combination with cisplatin could potentially be used as a new regimen for the treatment of ovarian cancer.
Literature
1.
go back to reference Rebecca L, Siegel M, Kimberly D, Miller M, Ahmedin Jemal DP. Cancer statistics, 2017. CA-CANCER J CLIN. 2017;67:7–30.CrossRef Rebecca L, Siegel M, Kimberly D, Miller M, Ahmedin Jemal DP. Cancer statistics, 2017. CA-CANCER J CLIN. 2017;67:7–30.CrossRef
2.
go back to reference van Driel WJ, Koole SN, Sikorska K, Schagen VLJ, Schreuder H, Hermans R, et al. Hyperthermic intraperitoneal chemotherapy in ovarian Cancer. N Engl J Med. 2018;378:230–40.CrossRef van Driel WJ, Koole SN, Sikorska K, Schagen VLJ, Schreuder H, Hermans R, et al. Hyperthermic intraperitoneal chemotherapy in ovarian Cancer. N Engl J Med. 2018;378:230–40.CrossRef
3.
go back to reference Al RT, Lopes AD, Bristow RE, Bryant A, Elattar A, Chattopadhyay S, et al. Surgical cytoreduction for recurrent epithelial ovarian cancer. Cochrane Database Syst Rev. 2013;2:D8765. Al RT, Lopes AD, Bristow RE, Bryant A, Elattar A, Chattopadhyay S, et al. Surgical cytoreduction for recurrent epithelial ovarian cancer. Cochrane Database Syst Rev. 2013;2:D8765.
4.
go back to reference Dancey J. Targeted therapies and clinical trials in ovarian cancer. Ann Oncol. 2013;24:x59–63.CrossRef Dancey J. Targeted therapies and clinical trials in ovarian cancer. Ann Oncol. 2013;24:x59–63.CrossRef
5.
go back to reference Sundar S, Neal RD, Kehoe S. Diagnosis of ovarian cancer. BMJ. 2015;351:h4443.CrossRef Sundar S, Neal RD, Kehoe S. Diagnosis of ovarian cancer. BMJ. 2015;351:h4443.CrossRef
6.
go back to reference Gad Singer RSHK. Patterns of p53 mutations separate ovarian serous borderline tumors and low- and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis. Am J Surg Pathol. 2005;29:218–24.CrossRef Gad Singer RSHK. Patterns of p53 mutations separate ovarian serous borderline tumors and low- and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis. Am J Surg Pathol. 2005;29:218–24.CrossRef
7.
go back to reference Mantia-Smaldone GM, Edwards RP, Vlad AM. Targeted treatment of recurrent platinum-resistant ovarian cancer: current and emerging therapies. Cancer Manag Res. 2011;3:25–38.PubMed Mantia-Smaldone GM, Edwards RP, Vlad AM. Targeted treatment of recurrent platinum-resistant ovarian cancer: current and emerging therapies. Cancer Manag Res. 2011;3:25–38.PubMed
8.
go back to reference Matsuura K, Huang N, Cocce K, Zhang L, Kornbluth S. Downregulation of the proapoptotic pr otein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin. Oncogene. 2016;36:1698.CrossRef Matsuura K, Huang N, Cocce K, Zhang L, Kornbluth S. Downregulation of the proapoptotic pr otein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin. Oncogene. 2016;36:1698.CrossRef
9.
go back to reference Niero EL, Rocha-Sales B, Lauand C, Cortez BA, de Souza MM, Rezende-Teixeira P, et al. The multiple facets of drug resistance: one history, different approaches. J Exp Clin Cancer Res. 2014;33:37.CrossRef Niero EL, Rocha-Sales B, Lauand C, Cortez BA, de Souza MM, Rezende-Teixeira P, et al. The multiple facets of drug resistance: one history, different approaches. J Exp Clin Cancer Res. 2014;33:37.CrossRef
10.
go back to reference Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer. 2003;3:502–16.CrossRef Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer. 2003;3:502–16.CrossRef
11.
go back to reference Lopez-Lazaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem. 2009;9:31–59.CrossRef Lopez-Lazaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem. 2009;9:31–59.CrossRef
12.
go back to reference Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets. 2008;8:634–46.CrossRef Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets. 2008;8:634–46.CrossRef
13.
go back to reference Horinaka M, Yoshida T, Shiraishi T, Nakata S, Wakada M, Nakanishi R, et al. Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells. Oncogene. 2005;24:7180–9.CrossRef Horinaka M, Yoshida T, Shiraishi T, Nakata S, Wakada M, Nakanishi R, et al. Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells. Oncogene. 2005;24:7180–9.CrossRef
14.
go back to reference Fang J, Zhou Q, Shi XL, Jiang BH. Luteolin inhibits insulin-like growth factor 1 receptor signaling in prostate cancer cells. Carcinogenesis. 2006;28:713–23.CrossRef Fang J, Zhou Q, Shi XL, Jiang BH. Luteolin inhibits insulin-like growth factor 1 receptor signaling in prostate cancer cells. Carcinogenesis. 2006;28:713–23.CrossRef
15.
go back to reference Song S, Su Z, Xu H, Niu M, Chen X, Min H, et al. Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1. Cell Death Dis. 2017;8:e2612.CrossRef Song S, Su Z, Xu H, Niu M, Chen X, Min H, et al. Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1. Cell Death Dis. 2017;8:e2612.CrossRef
16.
go back to reference Ong C, Zhou J, Ong C, Shen H. Luteolin induces G1 arrest in human nasopharyngeal carcinoma cells via the Akt–GSK-3β–cyclin D1 pathway. Cancer Lett. 2010;298:167–75.CrossRef Ong C, Zhou J, Ong C, Shen H. Luteolin induces G1 arrest in human nasopharyngeal carcinoma cells via the Akt–GSK-3β–cyclin D1 pathway. Cancer Lett. 2010;298:167–75.CrossRef
17.
go back to reference Chian SLYW. Luteolin sensitizes two Oxaliplatin-resistant colorectal Cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway. Asian Pac J Cancer Prev. 2014;15:2911–6.CrossRef Chian SLYW. Luteolin sensitizes two Oxaliplatin-resistant colorectal Cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway. Asian Pac J Cancer Prev. 2014;15:2911–6.CrossRef
18.
go back to reference Tu S, Ho C, Liu M, Huang C, Chang H, Chang C, et al. Luteolin sensitises drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem. 2013;141:1553–61.CrossRef Tu S, Ho C, Liu M, Huang C, Chang H, Chang C, et al. Luteolin sensitises drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem. 2013;141:1553–61.CrossRef
19.
go back to reference Du H, Liu Y, Chen X, Yu X, Hou X, Li H, et al. DT-13 synergistically potentiates the sensitivity of gastric cancer cells to topotecan via cell cycle arrest in vitro and in vivo. Eur J Pharmacol. 2018;818:124–31.CrossRef Du H, Liu Y, Chen X, Yu X, Hou X, Li H, et al. DT-13 synergistically potentiates the sensitivity of gastric cancer cells to topotecan via cell cycle arrest in vitro and in vivo. Eur J Pharmacol. 2018;818:124–31.CrossRef
20.
go back to reference Ren Y, Zhou X, Mei M, Yuan XB, Han L, Wang GX, et al. MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer. 2010;10:27.CrossRef Ren Y, Zhou X, Mei M, Yuan XB, Han L, Wang GX, et al. MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer. 2010;10:27.CrossRef
21.
go back to reference ZJ J. About the evaluation of drug combination. Acta Pharmacol Sin. 2004;25:146–7. ZJ J. About the evaluation of drug combination. Acta Pharmacol Sin. 2004;25:146–7.
22.
go back to reference Baguley BC. Multiple drug resistance mechanisms in Cancer. Mol Biotechnol. 2010;46:308–16.CrossRef Baguley BC. Multiple drug resistance mechanisms in Cancer. Mol Biotechnol. 2010;46:308–16.CrossRef
23.
go back to reference Sarosiek KA, Fraser C, Muthalagu N, Bhola PD, Chang W, McBrayer SK, et al. Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to Cancer therapeutics. Cancer Cell. 2017;31:142–56.CrossRef Sarosiek KA, Fraser C, Muthalagu N, Bhola PD, Chang W, McBrayer SK, et al. Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to Cancer therapeutics. Cancer Cell. 2017;31:142–56.CrossRef
24.
go back to reference Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy MS, et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci U S A. 2007;104:19512–7.CrossRef Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy MS, et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci U S A. 2007;104:19512–7.CrossRef
25.
go back to reference Chen P, Hu T, Ma Y, Chen X, Dai L, Lei N, et al. Abstract 2808: Luteolin inhibits cell proliferation and induces cell apoptosis via down-regulation of mitochondrial membrane potential in esophageal carcinoma cells EC1 and KYSE450. Cancer Res. 2015;75:2808.CrossRef Chen P, Hu T, Ma Y, Chen X, Dai L, Lei N, et al. Abstract 2808: Luteolin inhibits cell proliferation and induces cell apoptosis via down-regulation of mitochondrial membrane potential in esophageal carcinoma cells EC1 and KYSE450. Cancer Res. 2015;75:2808.CrossRef
26.
go back to reference Xavier CPR, Lima CF, Preto A, Seruca R, Fernandes-Ferreira M, Pereira-Wilson C. Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer Lett. 2009;281:162–70.CrossRef Xavier CPR, Lima CF, Preto A, Seruca R, Fernandes-Ferreira M, Pereira-Wilson C. Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer Lett. 2009;281:162–70.CrossRef
27.
go back to reference Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. NAT REV MOL CELL BIO. 2014;15:49–63.CrossRef Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. NAT REV MOL CELL BIO. 2014;15:49–63.CrossRef
28.
go back to reference Inoue-Yamauchi A, Jeng PS, Kim K, Chen H, Han S, Ganesan YT, et al. Targeting the differential addiction to anti-apoptotic BCL-2 family for cancer therapy. Nat Commun. 2017;8:16078.CrossRef Inoue-Yamauchi A, Jeng PS, Kim K, Chen H, Han S, Ganesan YT, et al. Targeting the differential addiction to anti-apoptotic BCL-2 family for cancer therapy. Nat Commun. 2017;8:16078.CrossRef
29.
go back to reference Cheng MCW EHYA. BCL-2, BCL-XL Emily H.-Y. A. Cheng,1 1 sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. MOL Cell. 2001;8:705–11.CrossRef Cheng MCW EHYA. BCL-2, BCL-XL Emily H.-Y. A. Cheng,1 1 sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. MOL Cell. 2001;8:705–11.CrossRef
30.
go back to reference PALMER JE, SANT CASSIA LJ, IRWIN CJ, MORRIS AG, ROLLASON TP. P53 and bcl-2 assessment in serous ovarian carcinoma. Int J Gynecol Cancer. 2008;18:241–8.CrossRef PALMER JE, SANT CASSIA LJ, IRWIN CJ, MORRIS AG, ROLLASON TP. P53 and bcl-2 assessment in serous ovarian carcinoma. Int J Gynecol Cancer. 2008;18:241–8.CrossRef
31.
go back to reference Fauvet R, Dufournet C, Poncelet C, Uzan C, Hugol D, Darai E. Expression of pro-apoptotic (p53, p21, bax, bak and fas) and anti-apoptotic (bcl-2 and bcl-x) proteins in serous versus mucinous borderline ovarian tumours. J Surg Oncol. 2005;92:337–43.CrossRef Fauvet R, Dufournet C, Poncelet C, Uzan C, Hugol D, Darai E. Expression of pro-apoptotic (p53, p21, bax, bak and fas) and anti-apoptotic (bcl-2 and bcl-x) proteins in serous versus mucinous borderline ovarian tumours. J Surg Oncol. 2005;92:337–43.CrossRef
32.
go back to reference Wang H, Zhang Z, Wei X, Dai R. Small-molecule inhibitor of Bcl-2 (TW-37) suppresses growth and enhances cisplatin-induced apoptosis in ovarian cancer cells. J OVARIAN RES. 2015;8:3.CrossRef Wang H, Zhang Z, Wei X, Dai R. Small-molecule inhibitor of Bcl-2 (TW-37) suppresses growth and enhances cisplatin-induced apoptosis in ovarian cancer cells. J OVARIAN RES. 2015;8:3.CrossRef
33.
go back to reference Zheng CH, Zhang M, Chen H, Wang CQ, Zhang MM, Jiang JH, et al. Luteolin from Flos Chrysanthemi and its derivatives: new small molecule Bcl-2 protein inhibitors. Bioorg Med Chem Lett. 2014;24:4672–7.CrossRef Zheng CH, Zhang M, Chen H, Wang CQ, Zhang MM, Jiang JH, et al. Luteolin from Flos Chrysanthemi and its derivatives: new small molecule Bcl-2 protein inhibitors. Bioorg Med Chem Lett. 2014;24:4672–7.CrossRef
34.
go back to reference Hudson LG, Zeineldin R, Stack MS. Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. CLIN EXP METASTAS. 2008;25:643–55.CrossRef Hudson LG, Zeineldin R, Stack MS. Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. CLIN EXP METASTAS. 2008;25:643–55.CrossRef
35.
go back to reference Joseph E, BRKW DL. Progression and Enhancement of metastatic potential after exposure of tumor cells to chemotherapeutic Agents1. Cancer Res. 2001;61:2857–61. Joseph E, BRKW DL. Progression and Enhancement of metastatic potential after exposure of tumor cells to chemotherapeutic Agents1. Cancer Res. 2001;61:2857–61.
36.
go back to reference Yang JM, Xu Z, Wu H, Zhu H, Wu X, Hait WN. Overexpression of extracellular matrix metalloproteinase inducer in multidrug resistant cancer cells. Mol Cancer Res. 2003;1:420–7.PubMed Yang JM, Xu Z, Wu H, Zhu H, Wu X, Hait WN. Overexpression of extracellular matrix metalloproteinase inducer in multidrug resistant cancer cells. Mol Cancer Res. 2003;1:420–7.PubMed
37.
go back to reference Fu X, Tian J, Zhang L, Chen Y, Hao Q. Involvement of microRNA-93, a new regulator of PTEN/Akt signaling pathway, in regulation of chemotherapeutic drug cisplatin chemosensitivity in ovarian cancer cells. FEBS Lett. 2012;586:1279–86.CrossRef Fu X, Tian J, Zhang L, Chen Y, Hao Q. Involvement of microRNA-93, a new regulator of PTEN/Akt signaling pathway, in regulation of chemotherapeutic drug cisplatin chemosensitivity in ovarian cancer cells. FEBS Lett. 2012;586:1279–86.CrossRef
38.
go back to reference Matthew T, Cook YLCB. Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells. Breast Cancer - Targets and Therapy. 2017;9:9–19. Matthew T, Cook YLCB. Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells. Breast Cancer - Targets and Therapy. 2017;9:9–19.
39.
go back to reference Ke-Hung Tsui LCTF. Upregulation of prostate-derived Ets factor by luteolin causes inhibition of cell proliferation and cell invasion in prostate carcinoma cells. Int J Cancer. 2011;130:2812–23.CrossRef Ke-Hung Tsui LCTF. Upregulation of prostate-derived Ets factor by luteolin causes inhibition of cell proliferation and cell invasion in prostate carcinoma cells. Int J Cancer. 2011;130:2812–23.CrossRef
Metadata
Title
Luteolin sensitizes the antitumor effect of cisplatin in drug-resistant ovarian cancer via induction of apoptosis and inhibition of cell migration and invasion
Authors
Haixia Wang
Youjun Luo
Tiankui Qiao
Zhaoxia Wu
Zhonghua Huang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2018
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-018-0468-y

Other articles of this Issue 1/2018

Journal of Ovarian Research 1/2018 Go to the issue