Skip to main content
Top
Published in: Journal of Ovarian Research 1/2016

Open Access 01-12-2016 | Research

Antagonism of Bcl-XL is necessary for synergy between carboplatin and BH3 mimetics in ovarian cancer cells

Authors: Mohammed Najim Abed, Marwan Ibrahim Abdullah, Alan Richardson

Published in: Journal of Ovarian Research | Issue 1/2016

Login to get access

Abstract

Background

BH3 mimetics are a class of drugs that antagonize the Bcl-2 family of apoptosis inhibitors. We have previously shown that these compounds can potentiate the activity of carboplatin against several ovarian cancer cell lines. However, recent clinical studies have highlighted that BH3 mimetics which antagonise Bcl-XL are associated with significant thrombocytopenia. This has led to the development of ABT-199 which specifically inhibits Bcl-2. Unfortunately, Bcl-XL appears to be more frequently deregulated in ovarian cancer than Bcl-2. We therefore compared the ability of ABT-199, and the Bcl-XL selective compound WEHI-539, to potentiate the activity of carboplatin in ovarian cancer cell lines.

Methods

WEHI-539, ABT-737 and ABT-199 were tested in combination with carboplatin using a panel of 6 ovarian cancer cell lines. The activity of the drugs was evaluated using cell growth assays, staining with trypan bue and measurement of apoptosis by measuring caspase 3/7 activity, PARP cleavage and annexin-V/propidium iodide staining.

Results

We found that WEHI-539 and ABT-737, but not ABT-199, were synergistic with carboplatin in cell growth assays and potentiated cell death when assessed by trypan blue staining. Furthermore, WEHI-539 and ABT-737 augmented carboplatin induced caspase 3/7 activity, PARP cleavage and annexin V labelling, but ABT-199 failed to do so.

Conclusions

These observations suggest that compounds which target Bcl-XL are necessary if BH3 mimetics are to be successfully used to treat patients with ovarian cancer and this highlights the need to develop strategies to minimize thrombocytopenia induced by such compounds.
Literature
1.
go back to reference Schorge JO, Modesitt SC, Coleman RL, Cohn DE, Kauff ND, Duska LR, et al. SGO White Paper on Ovarian Cancer: Etiology, Screening and Surveillance. Gynecol Oncol. 2010;119(1):7–17.CrossRefPubMed Schorge JO, Modesitt SC, Coleman RL, Cohn DE, Kauff ND, Duska LR, et al. SGO White Paper on Ovarian Cancer: Etiology, Screening and Surveillance. Gynecol Oncol. 2010;119(1):7–17.CrossRefPubMed
2.
go back to reference Ebell MH, Culp MB, Radke TJ. A systematic review of symptoms for the diagnosis of ovarian cancer. Am J Prev Med. 2015, in press. Ebell MH, Culp MB, Radke TJ. A systematic review of symptoms for the diagnosis of ovarian cancer. Am J Prev Med. 2015, in press.
3.
go back to reference Liu MX, Chan DW, Ngan HYS. Mechanisms of Chemoresistance in Human Ovarian Cancer at a Glance. Gynecol Obstet. 2012;2:3–6. Liu MX, Chan DW, Ngan HYS. Mechanisms of Chemoresistance in Human Ovarian Cancer at a Glance. Gynecol Obstet. 2012;2:3–6.
4.
go back to reference Butow PN, Price MA, Bell ML, Webb PM, Defazio A. Caring for women with ovarian cancer in the last year of life: A longitudinal study of caregiver quality of life, distress and unmet needs. Gynecol Oncol. 2014;132:690–7.CrossRefPubMed Butow PN, Price MA, Bell ML, Webb PM, Defazio A. Caring for women with ovarian cancer in the last year of life: A longitudinal study of caregiver quality of life, distress and unmet needs. Gynecol Oncol. 2014;132:690–7.CrossRefPubMed
5.
go back to reference Bagnato A, Rosanò L. Understanding and overcoming chemoresistance in ovarian cancer: emerging role of the endothelin axis. Curr Oncol. 2012;19(1):36–8.CrossRefPubMedPubMedCentral Bagnato A, Rosanò L. Understanding and overcoming chemoresistance in ovarian cancer: emerging role of the endothelin axis. Curr Oncol. 2012;19(1):36–8.CrossRefPubMedPubMedCentral
6.
go back to reference Indran IR, Tufo G, Pervaiz S, Brenner C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta. 1807;2011:735–45. Indran IR, Tufo G, Pervaiz S, Brenner C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta. 1807;2011:735–45.
8.
go back to reference Czaotar PE, Lessene G, Strasser A, Adam JM. Control of apoptosis by the Bcl-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63.CrossRef Czaotar PE, Lessene G, Strasser A, Adam JM. Control of apoptosis by the Bcl-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63.CrossRef
9.
go back to reference Vela L, Marzo I. Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to bedside. Curr Opin Pharmacol. 2015;23:74–81.CrossRefPubMed Vela L, Marzo I. Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to bedside. Curr Opin Pharmacol. 2015;23:74–81.CrossRefPubMed
10.
11.
go back to reference Malik SA, Orhon I, Morselli E, Criollo A, Shen S, et al. BH3 mimetics activate multiple pro-autophagic pathways. Oncogene. 2011;30(37):3918–29.CrossRefPubMed Malik SA, Orhon I, Morselli E, Criollo A, Shen S, et al. BH3 mimetics activate multiple pro-autophagic pathways. Oncogene. 2011;30(37):3918–29.CrossRefPubMed
12.
go back to reference Potter DS, Kelly P, Denneny O, Juvin V, Stephens LR, Dive C, et al. BMX acts downstream of PI3K to promote colorectal cancer cell survival and pathway inhibition sensitizes to the BH3 mimetic ABT-737. Neoplasia. 2014;16(2):147–57.CrossRefPubMedPubMedCentral Potter DS, Kelly P, Denneny O, Juvin V, Stephens LR, Dive C, et al. BMX acts downstream of PI3K to promote colorectal cancer cell survival and pathway inhibition sensitizes to the BH3 mimetic ABT-737. Neoplasia. 2014;16(2):147–57.CrossRefPubMedPubMedCentral
13.
go back to reference Wang B, Ni Z, Dai X, Qin L, Li X, Xu L, et al. The Bcl-2/xL inhibitor ABT-263 increases the stability of Mcl-1 mRNA and protein in hepatocellular carcinoma cells. Mol Cancer. 2014;13:98–109.CrossRefPubMedPubMedCentral Wang B, Ni Z, Dai X, Qin L, Li X, Xu L, et al. The Bcl-2/xL inhibitor ABT-263 increases the stability of Mcl-1 mRNA and protein in hepatocellular carcinoma cells. Mol Cancer. 2014;13:98–109.CrossRefPubMedPubMedCentral
14.
go back to reference Witham J, Valenti MR, De-Haven-Brandon AK, Vidot S, Eccles SA, Kaye SB, et al. The Bcl-2/Bcl-XL family inhibitor ABT-737 sensitizes ovarian cancer cells to carboplatin. Clin Cancer Res. 2007;13:7191–8.CrossRefPubMed Witham J, Valenti MR, De-Haven-Brandon AK, Vidot S, Eccles SA, Kaye SB, et al. The Bcl-2/Bcl-XL family inhibitor ABT-737 sensitizes ovarian cancer cells to carboplatin. Clin Cancer Res. 2007;13:7191–8.CrossRefPubMed
15.
go back to reference Stamelos VA, Robinson E, Redman CW, Richardson A. Navitoclax augments the activity of carboplatin and paclitaxel combinations in ovarian cancer cells. Gynecol Oncol. 2013;128:377–82.CrossRefPubMed Stamelos VA, Robinson E, Redman CW, Richardson A. Navitoclax augments the activity of carboplatin and paclitaxel combinations in ovarian cancer cells. Gynecol Oncol. 2013;128:377–82.CrossRefPubMed
16.
go back to reference Schoenwaelder SM, Jackson SP. Bcl-XL inhibitory BH3 mimetics (ABT-737 or ABT-263) and the modulation of cytosolic calcium flux and platelet function. Blood. 2012;119:1320–1.CrossRefPubMed Schoenwaelder SM, Jackson SP. Bcl-XL inhibitory BH3 mimetics (ABT-737 or ABT-263) and the modulation of cytosolic calcium flux and platelet function. Blood. 2012;119:1320–1.CrossRefPubMed
17.
go back to reference Balakrishnan K, Gandhi V. Bcl-2 antagonists: a proof of concept for CLL therapy. Investig New Drugs. 2013;31:1384–94.CrossRef Balakrishnan K, Gandhi V. Bcl-2 antagonists: a proof of concept for CLL therapy. Investig New Drugs. 2013;31:1384–94.CrossRef
18.
go back to reference Vandenberg CJ, Cory S. ABT-199, a new Bcl-2–specific BH3 mimetic, has in vivo efficacy against aggressive Myc-driven mouse lymphomas without provoking thrombocytopenia. Blood. 2013;121(12):2285–8.CrossRefPubMedPubMedCentral Vandenberg CJ, Cory S. ABT-199, a new Bcl-2–specific BH3 mimetic, has in vivo efficacy against aggressive Myc-driven mouse lymphomas without provoking thrombocytopenia. Blood. 2013;121(12):2285–8.CrossRefPubMedPubMedCentral
19.
go back to reference Touzeau C, Dousset C, Le Gouill S, Sampath D, Leverson JD, Souers AJ, et al. The Bcl-2 specific BH3 mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma. Leukemia. 2014;28(1):210–2.CrossRefPubMedPubMedCentral Touzeau C, Dousset C, Le Gouill S, Sampath D, Leverson JD, Souers AJ, et al. The Bcl-2 specific BH3 mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma. Leukemia. 2014;28(1):210–2.CrossRefPubMedPubMedCentral
20.
go back to reference Williams J, Lucas PC, Griffith KA, Choi M, Fogors S, Hu YY, et al. Expression of Bcl-xL in ovarian carcinoma is associated with chemoresistance and recurrent disease. Gynecol Oncol. 2005;96(2):287–95.CrossRefPubMed Williams J, Lucas PC, Griffith KA, Choi M, Fogors S, Hu YY, et al. Expression of Bcl-xL in ovarian carcinoma is associated with chemoresistance and recurrent disease. Gynecol Oncol. 2005;96(2):287–95.CrossRefPubMed
21.
go back to reference Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012;2(5):401–4.CrossRefPubMed Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012;2(5):401–4.CrossRefPubMed
22.
go back to reference Chou TC, Talalay P. Generalized Equations for the Analysis of Inhibitions of Michaelis-Menten and Higher-Order Kinetic Systems with Two or More Mutually Exclusive and Nonexclusive Inhibitors. Eur J Biochem. 1981;115:207–16.CrossRefPubMed Chou TC, Talalay P. Generalized Equations for the Analysis of Inhibitions of Michaelis-Menten and Higher-Order Kinetic Systems with Two or More Mutually Exclusive and Nonexclusive Inhibitors. Eur J Biochem. 1981;115:207–16.CrossRefPubMed
23.
go back to reference Chou TC. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method. Cancer Res. 2010;70(2):440–6.CrossRefPubMed Chou TC. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method. Cancer Res. 2010;70(2):440–6.CrossRefPubMed
24.
go back to reference Goldoni M, Johansson C. A mathematical approach to study combined effects of toxicants in vitro: Evaluation of the Bliss independence criterion and the Loewe additivity model. Toxicol in Vitro. 2007;21:759–69.CrossRefPubMed Goldoni M, Johansson C. A mathematical approach to study combined effects of toxicants in vitro: Evaluation of the Bliss independence criterion and the Loewe additivity model. Toxicol in Vitro. 2007;21:759–69.CrossRefPubMed
25.
26.
27.
go back to reference Kigawa J. New Strategy for Overcoming Resistance to Chemotherapy of Ovarian Cancer. Yonago Acta Medica. 2013;56:43–50.PubMedPubMedCentral Kigawa J. New Strategy for Overcoming Resistance to Chemotherapy of Ovarian Cancer. Yonago Acta Medica. 2013;56:43–50.PubMedPubMedCentral
29.
go back to reference Zinkel S, Gross A, Yang E. Bcl2 family in DNA damage and cell cycle control. Cell Death Differ. 2006;13:1351–9.CrossRefPubMed Zinkel S, Gross A, Yang E. Bcl2 family in DNA damage and cell cycle control. Cell Death Differ. 2006;13:1351–9.CrossRefPubMed
30.
go back to reference Laulier C, Lopez BS. The secret life of Bcl-2: Apoptosis-independent inhibition of DNA repair by Bcl-2 family members. Mutat Res. 2012;751:247–57.CrossRefPubMed Laulier C, Lopez BS. The secret life of Bcl-2: Apoptosis-independent inhibition of DNA repair by Bcl-2 family members. Mutat Res. 2012;751:247–57.CrossRefPubMed
31.
go back to reference Schmid D, Jarvis GE, Fay F, Small DM, Greene MK, Majkut J, et al. Nanoencapsulation of ABT-737 and camptothecin enhances their clinical potential through synergistic antitumor effects and reduction of systemic toxicity. Cell Death Dis. 2014;5:e1454.CrossRefPubMedPubMedCentral Schmid D, Jarvis GE, Fay F, Small DM, Greene MK, Majkut J, et al. Nanoencapsulation of ABT-737 and camptothecin enhances their clinical potential through synergistic antitumor effects and reduction of systemic toxicity. Cell Death Dis. 2014;5:e1454.CrossRefPubMedPubMedCentral
Metadata
Title
Antagonism of Bcl-XL is necessary for synergy between carboplatin and BH3 mimetics in ovarian cancer cells
Authors
Mohammed Najim Abed
Marwan Ibrahim Abdullah
Alan Richardson
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2016
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-016-0234-y

Other articles of this Issue 1/2016

Journal of Ovarian Research 1/2016 Go to the issue