Skip to main content
Top
Published in: Journal of Ovarian Research 1/2015

Open Access 01-12-2015 | Research

Retinoic acid has the potential to suppress endometriosis development

Authors: Yoshiaki Yamagata, Eiichi Takaki, Masahiro Shinagawa, Maki Okada, Kosuke Jozaki, Lifa Lee, Shun Sato, Ryo Maekawa, Toshiaki Taketani, Hiromi Asada, Hiroshi Tamura, Akira Nakai, Norihiro Sugino

Published in: Journal of Ovarian Research | Issue 1/2015

Login to get access

Abstract

Background

Despite endometriosis is common estrogen dependent disease afflicting women in reproductive age, the pathogenesis has not been fully elucidated. Retinoic acid has various functions in cells as biologic modulator, and aberrant retinoid metabolism seems to be involved in the lesions of endometriosis. In order to evaluate the potential of all-trans retinoic acid (ATRA) for therapeutic treatment, a transcriptome analysis and estradiol measurements in cultured endometriotic cells and tissues were conducted.

Methods

The mRNA expression levels in ATRA-treated endometriotic stromal cells (ESC) isolated from ovarian endometrial cysts (OEC) were investigated. Estradiol production in OEC tissues was also investigated.

Results

In the isolated ESC culture supplemented with ATRA for four days, total RNA was extracted followed by a transcriptome analysis using GeneChip. Forty-nine genes were upregulated and four genes were down-regulated by the ATRA treatment. Many upregulated genes were associated with the negative regulation of cellular proliferation. In addition, ATRA treatment decreased the mRNA expression of 17-beta-dehydrogenase 2 (HSD17B2) which converts estradiol into estrone in a dose-dependent manner, and the ELISA measurements indicated that estradiol production in the OEC tissue was inhibited by ATRA treatment.

Conclusions

Retinoic acid has the potential to suppress endometriosis development.
Literature
1.
go back to reference Ross AC, Gardner EM. The function of vitamin A in cellular growth and differentiation, and its roles during pregnancy and lactation. Adv Exp Med Biol. 1994;352:187–200.PubMedCrossRef Ross AC, Gardner EM. The function of vitamin A in cellular growth and differentiation, and its roles during pregnancy and lactation. Adv Exp Med Biol. 1994;352:187–200.PubMedCrossRef
2.
go back to reference Ross SA, McCaffery PJ, Drager UC, De Luca LM. Retinoids in embryonal development. Physiol Rev. 2000;80:1021–54.PubMed Ross SA, McCaffery PJ, Drager UC, De Luca LM. Retinoids in embryonal development. Physiol Rev. 2000;80:1021–54.PubMed
3.
go back to reference Clagett-Dame M, DeLuca HF. The role of vitamin A in mammalian reproduction and embryonic development. Annu Rev Nutr. 2002;22:347–81.PubMedCrossRef Clagett-Dame M, DeLuca HF. The role of vitamin A in mammalian reproduction and embryonic development. Annu Rev Nutr. 2002;22:347–81.PubMedCrossRef
4.
go back to reference Duester G. Alcohol dehydrogenase as a critical mediator of retinoic acid synthesis from vitamin A in the mouse embryo. J Nutr. 1998;128:459S–62S.PubMed Duester G. Alcohol dehydrogenase as a critical mediator of retinoic acid synthesis from vitamin A in the mouse embryo. J Nutr. 1998;128:459S–62S.PubMed
5.
go back to reference Crouch RK, Chader GJ, Wiggert B, Pepperberg DR. Retinoids and the visual process. Photochem Photobiol. 1996;64:613–21.PubMedCrossRef Crouch RK, Chader GJ, Wiggert B, Pepperberg DR. Retinoids and the visual process. Photochem Photobiol. 1996;64:613–21.PubMedCrossRef
6.
7.
go back to reference Drager UC. Retinoic acid signaling in the functioning brain. Sci STKE. 2006;pe10. Drager UC. Retinoic acid signaling in the functioning brain. Sci STKE. 2006;pe10.
8.
go back to reference Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci. 2007;8:755–65.PubMedCrossRef Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci. 2007;8:755–65.PubMedCrossRef
9.
go back to reference Zheng WL, Ong DE. Spatial and temporal patterns of expression of cellular retinol-binding protein and cellular retinoic acid-binding proteins in rat uterus during early pregnancy. Biol Reprod. 1998;58:963–70.PubMedCrossRef Zheng WL, Ong DE. Spatial and temporal patterns of expression of cellular retinol-binding protein and cellular retinoic acid-binding proteins in rat uterus during early pregnancy. Biol Reprod. 1998;58:963–70.PubMedCrossRef
10.
go back to reference Zheng WL, Sierra-Rivera E, Luan J, Osteen KG, Ong DE. Retinoic acid synthesis and expression of cellular retinol-binding protein and cellular retinoic acid-binding protein type II are concurrent with decidualization of rat uterine stromal cells. Endocrinology. 2000;141:802–8.PubMed Zheng WL, Sierra-Rivera E, Luan J, Osteen KG, Ong DE. Retinoic acid synthesis and expression of cellular retinol-binding protein and cellular retinoic acid-binding protein type II are concurrent with decidualization of rat uterine stromal cells. Endocrinology. 2000;141:802–8.PubMed
11.
go back to reference Sidell N, Feng Y, Hao L, Wu J, Yu J, Kane MA, et al. Retinoic acid is a cofactor for translational regulation of vascular endothelial growth factor in human endometrial stromal cells. Mol Endocrinol. 2010;24:148–60.PubMedCentralPubMedCrossRef Sidell N, Feng Y, Hao L, Wu J, Yu J, Kane MA, et al. Retinoic acid is a cofactor for translational regulation of vascular endothelial growth factor in human endometrial stromal cells. Mol Endocrinol. 2010;24:148–60.PubMedCentralPubMedCrossRef
12.
go back to reference Wu J, Hansen JM, Hao L, Taylor RN, Sidell N. Retinoic acid stimulation of VEGF secretion from human endometrial stromal cells is mediated by production of reactive oxygen species. J Physiol. 2011;589:863–75.PubMedCentralPubMedCrossRef Wu J, Hansen JM, Hao L, Taylor RN, Sidell N. Retinoic acid stimulation of VEGF secretion from human endometrial stromal cells is mediated by production of reactive oxygen species. J Physiol. 2011;589:863–75.PubMedCentralPubMedCrossRef
13.
go back to reference Sawatsri S, Desai N, Rock JA, Sidell N. Retinoic acid suppresses interleukin-6 production in human endometrial cells. Fertil Steril. 2000;73:1012–19.PubMedCrossRef Sawatsri S, Desai N, Rock JA, Sidell N. Retinoic acid suppresses interleukin-6 production in human endometrial cells. Fertil Steril. 2000;73:1012–19.PubMedCrossRef
14.
go back to reference Pavone ME, Reierstad S, Sun H, Milad M, Bulun SE, Cheng YH. Altered retinoid uptake and action contributes to cell survival in endometriosis. J Clin Endocrinol Metab. 2010;95:E300–9.PubMedCentralPubMedCrossRef Pavone ME, Reierstad S, Sun H, Milad M, Bulun SE, Cheng YH. Altered retinoid uptake and action contributes to cell survival in endometriosis. J Clin Endocrinol Metab. 2010;95:E300–9.PubMedCentralPubMedCrossRef
15.
go back to reference Pavone ME, Dyson M, Reirstad S, Pearson E, Ishikawa H, Cheng YH, et al. Endometriosis expresses a molecular pattern consistent with decreased retinoid uptake, metabolism and action. Hum Reprod. 2011;26:2157–64.PubMedCentralPubMedCrossRef Pavone ME, Dyson M, Reirstad S, Pearson E, Ishikawa H, Cheng YH, et al. Endometriosis expresses a molecular pattern consistent with decreased retinoid uptake, metabolism and action. Hum Reprod. 2011;26:2157–64.PubMedCentralPubMedCrossRef
16.
go back to reference Pierzchalski K, Taylor RN, Nezhat C, Jones JW, Napoli JL, Yang G, et al. Retinoic acid biosynthesis is impaired in human and murine endometriosis. Biol Reprod. 2014;91:84.PubMedCrossRef Pierzchalski K, Taylor RN, Nezhat C, Jones JW, Napoli JL, Yang G, et al. Retinoic acid biosynthesis is impaired in human and murine endometriosis. Biol Reprod. 2014;91:84.PubMedCrossRef
17.
go back to reference Sidell N, Han SW, Parthasarathy S. Regulation and modulation of abnormal immune responses in endometriosis. Ann N Y Acad Sci. 2002;955:159–73.PubMedCrossRef Sidell N, Han SW, Parthasarathy S. Regulation and modulation of abnormal immune responses in endometriosis. Ann N Y Acad Sci. 2002;955:159–73.PubMedCrossRef
18.
go back to reference Sokalska A, Anderson M, Villanueva J, Ortega I, Bruner-Tran KL, Osteen KG, et al. Effects of simvastatin on retinoic acid system in primary human endometrial stromal cells and in a chimeric model of human endometriosis. J Clin Endocrinol Metab. 2013;98:E463–71.PubMedCentralPubMedCrossRef Sokalska A, Anderson M, Villanueva J, Ortega I, Bruner-Tran KL, Osteen KG, et al. Effects of simvastatin on retinoic acid system in primary human endometrial stromal cells and in a chimeric model of human endometriosis. J Clin Endocrinol Metab. 2013;98:E463–71.PubMedCentralPubMedCrossRef
19.
go back to reference Yamagata Y, Nishino K, Takaki E, Sato S, Maekawa R, Nakai A, et al. Genome-wide DNA methylation profiling in cultured eutopic and ectopic endometrial stromal cells. PLoS One. 2014;9, e83612.PubMedCentralPubMedCrossRef Yamagata Y, Nishino K, Takaki E, Sato S, Maekawa R, Nakai A, et al. Genome-wide DNA methylation profiling in cultured eutopic and ectopic endometrial stromal cells. PLoS One. 2014;9, e83612.PubMedCentralPubMedCrossRef
20.
go back to reference Wieser F, Wu J, Shen Z, Taylor RN, Sidell N. Retinoic acid suppresses growth of lesions, inhibits peritoneal cytokine secretion, and promotes macrophage differentiation in an immunocompetent mouse model of endometriosis. Fertil Steril. 2012;97:1430–7.PubMedCentralPubMedCrossRef Wieser F, Wu J, Shen Z, Taylor RN, Sidell N. Retinoic acid suppresses growth of lesions, inhibits peritoneal cytokine secretion, and promotes macrophage differentiation in an immunocompetent mouse model of endometriosis. Fertil Steril. 2012;97:1430–7.PubMedCentralPubMedCrossRef
21.
go back to reference Yamagata Y, Asada H, Tamura I, Lee L, Maekawa R, Taniguchi K, et al. DNA methyltransferase expression in the human endometrium: down-regulation by progesterone and estrogen. Hum Reprod. 2009;24:1126–32.PubMedCrossRef Yamagata Y, Asada H, Tamura I, Lee L, Maekawa R, Taniguchi K, et al. DNA methyltransferase expression in the human endometrium: down-regulation by progesterone and estrogen. Hum Reprod. 2009;24:1126–32.PubMedCrossRef
22.
go back to reference Barbieri RL, Makris A, Randall RW, Daniels G, Kistner RW, Ryan KJ. Insulin stimulates androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. J Clin Endocrinol Metab. 1986;62:904–10.PubMedCrossRef Barbieri RL, Makris A, Randall RW, Daniels G, Kistner RW, Ryan KJ. Insulin stimulates androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. J Clin Endocrinol Metab. 1986;62:904–10.PubMedCrossRef
23.
go back to reference Kitawaki J, Noguchi T, Amatsu T, Maeda K, Tsukamoto K, Yamamoto T, et al. Expression of aromatase cytochrome P450 protein and messenger ribonucleic acid in human endometriotic and adenomyotic tissues but not in normal endometrium. Biol Reprod. 1997;57:514–9.PubMedCrossRef Kitawaki J, Noguchi T, Amatsu T, Maeda K, Tsukamoto K, Yamamoto T, et al. Expression of aromatase cytochrome P450 protein and messenger ribonucleic acid in human endometriotic and adenomyotic tissues but not in normal endometrium. Biol Reprod. 1997;57:514–9.PubMedCrossRef
24.
go back to reference Burney RO, Giudice LC. Pathogenesis and pathophysiology of endometriosis. Fertil Steril. 2012;98:511–9.PubMedCrossRef Burney RO, Giudice LC. Pathogenesis and pathophysiology of endometriosis. Fertil Steril. 2012;98:511–9.PubMedCrossRef
25.
go back to reference Bulun S, Zeitoun K, Takayama K, Sasano H. Molecular basis for treating endometriosis with aromatase inhibitors. Hum Reprod Update. 2000;6:413–8.PubMedCrossRef Bulun S, Zeitoun K, Takayama K, Sasano H. Molecular basis for treating endometriosis with aromatase inhibitors. Hum Reprod Update. 2000;6:413–8.PubMedCrossRef
27.
go back to reference Wickenheisser JK, Nelson-DeGrave VL, Hendricks KL, Legro RS, Strauss 3rd JF, McAllister JM. Retinoids and retinol differentially regulate steroid biosynthesis in ovarian theca cells isolated from normal cycling women and women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90:4858–65.PubMedCrossRef Wickenheisser JK, Nelson-DeGrave VL, Hendricks KL, Legro RS, Strauss 3rd JF, McAllister JM. Retinoids and retinol differentially regulate steroid biosynthesis in ovarian theca cells isolated from normal cycling women and women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90:4858–65.PubMedCrossRef
28.
go back to reference Munetsuna E, Hojo Y, Hattori M, Ishii H, Kawato S, Ishida A, et al. Retinoic acid stimulates 17beta-estradiol and testosterone synthesis in rat hippocampal slice cultures. Endocrinology. 2009;150:4260–9.PubMedCrossRef Munetsuna E, Hojo Y, Hattori M, Ishii H, Kawato S, Ishida A, et al. Retinoic acid stimulates 17beta-estradiol and testosterone synthesis in rat hippocampal slice cultures. Endocrinology. 2009;150:4260–9.PubMedCrossRef
29.
go back to reference Lee HK, Yoo MS, Choi HS, Kwon HB, Soh J. Retinoic acids up-regulate steroidogenic acute regulatory protein gene. Mol Cell Endocrinol. 1999;148:1–10.PubMedCrossRef Lee HK, Yoo MS, Choi HS, Kwon HB, Soh J. Retinoic acids up-regulate steroidogenic acute regulatory protein gene. Mol Cell Endocrinol. 1999;148:1–10.PubMedCrossRef
30.
go back to reference Lefevre A, Rogier E, Astraudo C, Duquenne C, Finaz C. Regulation by retinoids of luteinizing hormone/chorionic gonadotropin receptor, cholesterol side-chain cleavage cytochrome P-450, 3 beta-hydroxysteroid dehydrogenase/delta (5–4)-isomerase and 17 alpha-hydroxylase/C17-20 lyase cytochrome P-450 messenger ribonucleic acid levels in the K9 mouse Leydig cell line. Mol Cell Endocrinol. 1994;106:31–9.PubMedCrossRef Lefevre A, Rogier E, Astraudo C, Duquenne C, Finaz C. Regulation by retinoids of luteinizing hormone/chorionic gonadotropin receptor, cholesterol side-chain cleavage cytochrome P-450, 3 beta-hydroxysteroid dehydrogenase/delta (5–4)-isomerase and 17 alpha-hydroxylase/C17-20 lyase cytochrome P-450 messenger ribonucleic acid levels in the K9 mouse Leydig cell line. Mol Cell Endocrinol. 1994;106:31–9.PubMedCrossRef
31.
go back to reference Kazmi SM, Plante RK, Visconti V, Lau CY. Comparison of N-(4-hydroxyphenyl)retinamide and all-trans-retinoic acid in the regulation of retinoid receptor-mediated gene expression in human breast cancer cell lines. Cancer Res. 1996;56:1056–62.PubMed Kazmi SM, Plante RK, Visconti V, Lau CY. Comparison of N-(4-hydroxyphenyl)retinamide and all-trans-retinoic acid in the regulation of retinoid receptor-mediated gene expression in human breast cancer cell lines. Cancer Res. 1996;56:1056–62.PubMed
Metadata
Title
Retinoic acid has the potential to suppress endometriosis development
Authors
Yoshiaki Yamagata
Eiichi Takaki
Masahiro Shinagawa
Maki Okada
Kosuke Jozaki
Lifa Lee
Shun Sato
Ryo Maekawa
Toshiaki Taketani
Hiromi Asada
Hiroshi Tamura
Akira Nakai
Norihiro Sugino
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2015
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-015-0179-6

Other articles of this Issue 1/2015

Journal of Ovarian Research 1/2015 Go to the issue