Skip to main content
Top
Published in: Journal of Ovarian Research 1/2015

Open Access 01-12-2015 | Brief communication

A method to investigate the anti-metabolic activity of anti-cancer agents on ovarian cancer cells cultured in a 96-well high throughput format

Authors: Simon J. Hogg, John J. Evans, Peter H. Sykes, Kenny Chitcholtan

Published in: Journal of Ovarian Research | Issue 1/2015

Login to get access

Abstract

Background

An early step of advanced ovarian cancer begins when floating cancerous cells as single cells or small clusters grow on the peritoneal surface. This surface is rich in extracellular matrix (ECM) proteins, which have profound effects on cellular behaviour and can facilitate cancer progression. Subsequently, this ECM may alter cellular metabolism making cancer cells susceptible to chemotherapeutic agents differently. Therefore, generating a cell culture tool in vitro that includes the interaction between ECM and cancer cells will facilitate our understanding of how cancer cells behave during cancer treatment. There is some evidence to suggest that in an in vitro model that includes ECM components such as collagens will provide a better predictive tool for drug evaluation than a traditional cell monolayer (2D) culture model.

Findings

As a proof -of- concept, we made a collagen gel in a 96-well plate format and utilised this to evaluate the efficacy of clinical cytotoxic drugs, a targeted drug, and food compounds in single and combination treatments. The primary endpoints were to measure the reduction of cellular metabolism and secretion of vascular endothelial growth factor (VEGF). The invasive capacity of cancer cells was observed in collagen gels and it was cell line-dependent. The responses to drugs were prominently observed in collagen gels, but they had little effect on 2D cell monolayers. These responses were cell line- and type of drug-dependent.

Conclusions

The collagen gel in a 96 well plate format was easy to set up and could have potential to identify drug sensitivity in the clinical management of women with platinum resistant ovarian cancer.
Literature
1.
go back to reference Moghaddam SM, Amini A, Morris DL, Pourgholami MH. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev. 2012;31:143–62.CrossRef Moghaddam SM, Amini A, Morris DL, Pourgholami MH. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev. 2012;31:143–62.CrossRef
2.
go back to reference Kenny HA, Dogan S, Zillhardt M, Mitra A, Yamada SD, Krausz T, et al. Organotypic Models of Metastasis: A 3 Dimensional Culture Mimicking the Human Peritoneum and Omentum for the Study of the Early Steps of Ovarian Cancer Metastasis. Cancer Treat Res. 2009;149:335–51.PubMedCentralPubMedCrossRef Kenny HA, Dogan S, Zillhardt M, Mitra A, Yamada SD, Krausz T, et al. Organotypic Models of Metastasis: A 3 Dimensional Culture Mimicking the Human Peritoneum and Omentum for the Study of the Early Steps of Ovarian Cancer Metastasis. Cancer Treat Res. 2009;149:335–51.PubMedCentralPubMedCrossRef
3.
go back to reference Adissu HA, Asem EK, Lelievre SA. Three-Dimensional Cell Culture to Model Epithelia in the Female Reproductive System. Reprod Sci. 2007;14:11–9.PubMedCrossRef Adissu HA, Asem EK, Lelievre SA. Three-Dimensional Cell Culture to Model Epithelia in the Female Reproductive System. Reprod Sci. 2007;14:11–9.PubMedCrossRef
4.
go back to reference Mastro AM, Vogler EA. A Three-Dimensional Osteogenic Tissue Model for the Study of Metastatic Tumor Cell Interactions with Bone. Cancer Res. 2009;69(10):4097–100.PubMedCrossRef Mastro AM, Vogler EA. A Three-Dimensional Osteogenic Tissue Model for the Study of Metastatic Tumor Cell Interactions with Bone. Cancer Res. 2009;69(10):4097–100.PubMedCrossRef
5.
go back to reference Chitcholtan K, Asselin E, Parent S, Sykes PH, Evans JJ. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer. Exp Cell Res. 2013;319:75–87.PubMedCrossRef Chitcholtan K, Asselin E, Parent S, Sykes PH, Evans JJ. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer. Exp Cell Res. 2013;319:75–87.PubMedCrossRef
6.
go back to reference Aide N, Kinross K, Cullinane C, Roselt P, Waldeck K, Neels O, et al. 18 F-FLT PET as a Surrogate Marker of Drug Efficacy During mTOR Inhibition by Everolimus in a Preclinical Cisplatin-Resistant Ovarian Tumor Model. J Nucl Med. 2010;51:1559–64.PubMedCrossRef Aide N, Kinross K, Cullinane C, Roselt P, Waldeck K, Neels O, et al. 18 F-FLT PET as a Surrogate Marker of Drug Efficacy During mTOR Inhibition by Everolimus in a Preclinical Cisplatin-Resistant Ovarian Tumor Model. J Nucl Med. 2010;51:1559–64.PubMedCrossRef
7.
go back to reference Kundu JK, Surh Y. Cancer chemopreventive and therapeutic potential of resveratrol: Mechanistic perspectives. Cancer Lett. 2008;269:243–61.PubMedCrossRef Kundu JK, Surh Y. Cancer chemopreventive and therapeutic potential of resveratrol: Mechanistic perspectives. Cancer Lett. 2008;269:243–61.PubMedCrossRef
8.
go back to reference Clement Y. Can green tea do that? A literature review of the clinical evidence. Prev Med. 2009;49:83–7.PubMedCrossRef Clement Y. Can green tea do that? A literature review of the clinical evidence. Prev Med. 2009;49:83–7.PubMedCrossRef
9.
go back to reference Chen J, Wang J, Chen D, Yang J, Yang C, Zhang Y, et al. Evaluation of characteristics of CD44 + CD117+ ovarian cancer stem cells in three dimensional basement membrane extract scaffold versus two dimensional monocultures. BMC Cell Biol. 2013;14:7.PubMedCentralPubMedCrossRef Chen J, Wang J, Chen D, Yang J, Yang C, Zhang Y, et al. Evaluation of characteristics of CD44 + CD117+ ovarian cancer stem cells in three dimensional basement membrane extract scaffold versus two dimensional monocultures. BMC Cell Biol. 2013;14:7.PubMedCentralPubMedCrossRef
10.
go back to reference Rahmanzadeh R, Rai P, Celli JP, Rizvi I, Baron-Lühr B, Gerdes J, et al. Ki-67 as a Molecular Target for Therapy in an In vitro Three-Dimensional Model for Ovarian Cancer. Cancer Res. 2010;70(22):9234–42.PubMedCentralPubMedCrossRef Rahmanzadeh R, Rai P, Celli JP, Rizvi I, Baron-Lühr B, Gerdes J, et al. Ki-67 as a Molecular Target for Therapy in an In vitro Three-Dimensional Model for Ovarian Cancer. Cancer Res. 2010;70(22):9234–42.PubMedCentralPubMedCrossRef
11.
go back to reference Zhong W, Celli JP, Rizvi I, Mai Z, Spring BQ, Yun SH, et al. In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring. Brit J Cancer. 2009;101:2015–22.PubMedCentralPubMedCrossRef Zhong W, Celli JP, Rizvi I, Mai Z, Spring BQ, Yun SH, et al. In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring. Brit J Cancer. 2009;101:2015–22.PubMedCentralPubMedCrossRef
12.
14.
go back to reference Li Q, Chow AB, Mattingly RR. Three-Dimensional Overlay Culture Models of Human Breast Cancer Reveal a Critical Sensitivity to Mitogen-Activated Protein Kinase Kinase Inhibitors. J Pharmacol Exp Ther. 2010;332:821–8.PubMedCentralPubMedCrossRef Li Q, Chow AB, Mattingly RR. Three-Dimensional Overlay Culture Models of Human Breast Cancer Reveal a Critical Sensitivity to Mitogen-Activated Protein Kinase Kinase Inhibitors. J Pharmacol Exp Ther. 2010;332:821–8.PubMedCentralPubMedCrossRef
15.
go back to reference Witz CA, Montoya-Rodriguez IA, Cho S, Centonze VE, Bonewald LF, Schenken RS. Composition of the Extracellular Matrix of the Peritoneum. J Soc Gynecol Investig. 2001;8:299–304.PubMedCrossRef Witz CA, Montoya-Rodriguez IA, Cho S, Centonze VE, Bonewald LF, Schenken RS. Composition of the Extracellular Matrix of the Peritoneum. J Soc Gynecol Investig. 2001;8:299–304.PubMedCrossRef
16.
go back to reference Moss NM, Barbolina MV, Liu Y, Sun L, Munshi HG, Stack MS. Ovarian Cancer Cell Detachment and Multicellular Aggregate Formation Are Regulated by Membrane Type 1 Matrix Metalloproteinase: A Potential Role in I.p. Metastatic Dissemination. Cancer Res. 2009;69(17):7121–9.PubMedCentralPubMedCrossRef Moss NM, Barbolina MV, Liu Y, Sun L, Munshi HG, Stack MS. Ovarian Cancer Cell Detachment and Multicellular Aggregate Formation Are Regulated by Membrane Type 1 Matrix Metalloproteinase: A Potential Role in I.p. Metastatic Dissemination. Cancer Res. 2009;69(17):7121–9.PubMedCentralPubMedCrossRef
17.
go back to reference Miroshnikova YA, Jorgens DM, Spirio L, Auer M, Sieminski-Sarang AL, Weaver VM. Engineering strategies to recapitulate epithelial morphogenesis within synthetic 3 dimensional extracellular matrix with tunable mechanical properties. Phys Biol. 2011;8(2):026013.PubMedCentralPubMedCrossRef Miroshnikova YA, Jorgens DM, Spirio L, Auer M, Sieminski-Sarang AL, Weaver VM. Engineering strategies to recapitulate epithelial morphogenesis within synthetic 3 dimensional extracellular matrix with tunable mechanical properties. Phys Biol. 2011;8(2):026013.PubMedCentralPubMedCrossRef
18.
go back to reference Engblom P, Rantanen V, Kulmala J, Helenius H, Grènman S. Additive and supra-additive cytotoxicity of cisplatin-taxane combinations in ovarian carcinoma cell lines. Brit J Cancer. 1999;79(2):286–92.PubMedCentralPubMedCrossRef Engblom P, Rantanen V, Kulmala J, Helenius H, Grènman S. Additive and supra-additive cytotoxicity of cisplatin-taxane combinations in ovarian carcinoma cell lines. Brit J Cancer. 1999;79(2):286–92.PubMedCentralPubMedCrossRef
19.
20.
go back to reference Fouladi M, Laningham F, Wu J, O’Shaughnessy MA, Molina K, Broniscer A, et al. Phase I Study of Everolimus in Pediatric Patients With Refractory Solid Tumors. J Clin Oncol. 2007;25:4806–12.PubMedCrossRef Fouladi M, Laningham F, Wu J, O’Shaughnessy MA, Molina K, Broniscer A, et al. Phase I Study of Everolimus in Pediatric Patients With Refractory Solid Tumors. J Clin Oncol. 2007;25:4806–12.PubMedCrossRef
21.
go back to reference Ullmann U, Haller J, Decourt JP, Girault N, Girault J, Richard-Caudron AS, et al. A Single Ascending Dose Study of Epigallocatechin Gallate in Healthy Volunteers. J Inter Med Res. 2003;31:88–101.CrossRef Ullmann U, Haller J, Decourt JP, Girault N, Girault J, Richard-Caudron AS, et al. A Single Ascending Dose Study of Epigallocatechin Gallate in Healthy Volunteers. J Inter Med Res. 2003;31:88–101.CrossRef
22.
go back to reference Pawaskar DK, Straubinger RM, Fetterly GJ, Ma WW, Jusko WJ. Interactions of Everolimus and Sorafenib in Pancreatic Cancer Cells. AAPS J. 2013;15(1):78–84.PubMedCentralPubMedCrossRef Pawaskar DK, Straubinger RM, Fetterly GJ, Ma WW, Jusko WJ. Interactions of Everolimus and Sorafenib in Pancreatic Cancer Cells. AAPS J. 2013;15(1):78–84.PubMedCentralPubMedCrossRef
24.
go back to reference Kobayashi M, Sakamoto J, Namikawa T, Okamoto K, Okabayashi T, Ichikawa K, et al. Pharmacokinetic study of paclitaxel in malignant ascites from advanced gastric cancer patients. World J Gastroenterol. 2006;12(9):1412–5.PubMedCentralPubMed Kobayashi M, Sakamoto J, Namikawa T, Okamoto K, Okabayashi T, Ichikawa K, et al. Pharmacokinetic study of paclitaxel in malignant ascites from advanced gastric cancer patients. World J Gastroenterol. 2006;12(9):1412–5.PubMedCentralPubMed
25.
go back to reference Pruksakorn D, Lirdprapamongkol K, Chokchaichamnankit D, Subhasitanont P, Chiablaem K, Svasti J, et al. Metabolic alteration of HepG2 in scaffold-based 3-D culture: Proteomic approach. Proteomics. 2010;10:3896–904.PubMedCrossRef Pruksakorn D, Lirdprapamongkol K, Chokchaichamnankit D, Subhasitanont P, Chiablaem K, Svasti J, et al. Metabolic alteration of HepG2 in scaffold-based 3-D culture: Proteomic approach. Proteomics. 2010;10:3896–904.PubMedCrossRef
26.
go back to reference Tsunetoh S, Terai Y, Sasaki H, Tanabe A, Tanaka Y, Sekijima T, et al. Topotecan as a molecular targeting agent which blocks the Akt and VEGF cascade in platinum-resistant ovarian cancers. Cancer Biol Thera. 2010;10(11):1137–46.CrossRef Tsunetoh S, Terai Y, Sasaki H, Tanabe A, Tanaka Y, Sekijima T, et al. Topotecan as a molecular targeting agent which blocks the Akt and VEGF cascade in platinum-resistant ovarian cancers. Cancer Biol Thera. 2010;10(11):1137–46.CrossRef
27.
go back to reference Sherman-Baust CA, Becker KG, Wood WH, Zhang Y, Morin PJ. Gene expression and pathway analysis of ovarian cancer cells selected for resistance to cisplatin, paclitaxel, or doxorubicin. J Ovarian Res. 2011;4:21.PubMedCentralPubMedCrossRef Sherman-Baust CA, Becker KG, Wood WH, Zhang Y, Morin PJ. Gene expression and pathway analysis of ovarian cancer cells selected for resistance to cisplatin, paclitaxel, or doxorubicin. J Ovarian Res. 2011;4:21.PubMedCentralPubMedCrossRef
28.
go back to reference Rizvi I, Celli JP, Evans CL, Abu-Yousif AO, Muzikansky A, Pogue BW, et al. Synergistic Enhancement of Carboplatin Efficacy with Photodynamic Therapy in a Three-Dimensional Model for Micrometastatic Ovarian Cancer. Cancer Res. 2010;70(22):9319–28.PubMedCentralPubMedCrossRef Rizvi I, Celli JP, Evans CL, Abu-Yousif AO, Muzikansky A, Pogue BW, et al. Synergistic Enhancement of Carboplatin Efficacy with Photodynamic Therapy in a Three-Dimensional Model for Micrometastatic Ovarian Cancer. Cancer Res. 2010;70(22):9319–28.PubMedCentralPubMedCrossRef
29.
go back to reference Van laar ES, Izbicka E, Weitman S, Medina-Gundrum L, Macdonald JR, Waters SJ. Antitumor activity of irofulven against human ovarian cancer cell lines, human tumor colony-forming units, and xenografts. Int J Gynecol Cancer. 2004;14:824–31.PubMedCrossRef Van laar ES, Izbicka E, Weitman S, Medina-Gundrum L, Macdonald JR, Waters SJ. Antitumor activity of irofulven against human ovarian cancer cell lines, human tumor colony-forming units, and xenografts. Int J Gynecol Cancer. 2004;14:824–31.PubMedCrossRef
31.
go back to reference Weigelt B, Lo AT, Park CC, Gray JW, Bissell MJ. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res Treat. 2010;122(1):35–43.PubMedCentralPubMedCrossRef Weigelt B, Lo AT, Park CC, Gray JW, Bissell MJ. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res Treat. 2010;122(1):35–43.PubMedCentralPubMedCrossRef
32.
go back to reference Li WW, Li VW, Hutnik M, Chiou AS. Tumor Angiogenesis as a Target for Dietary Cancer Prevention. J Oncol. 2012;2012:1–23.CrossRef Li WW, Li VW, Hutnik M, Chiou AS. Tumor Angiogenesis as a Target for Dietary Cancer Prevention. J Oncol. 2012;2012:1–23.CrossRef
33.
go back to reference Lee JM, Mhawech-Fauceglia P, Lee N, Parsanian LC, Lin YG, Gayther SA, et al. A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Labo Invest. 2013;93:528–42.CrossRef Lee JM, Mhawech-Fauceglia P, Lee N, Parsanian LC, Lin YG, Gayther SA, et al. A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Labo Invest. 2013;93:528–42.CrossRef
34.
go back to reference Lanitis E, Dangaj D, Hagemann IS, Song D-G, Best A, Sandaltzopoulos R, et al. Primary Human Ovarian Epithelial Cancer Cells Broadly Express HER2 at Immunologically-Detectable Levels. PLoS One. 2012;7(11):e49829.PubMedCentralPubMedCrossRef Lanitis E, Dangaj D, Hagemann IS, Song D-G, Best A, Sandaltzopoulos R, et al. Primary Human Ovarian Epithelial Cancer Cells Broadly Express HER2 at Immunologically-Detectable Levels. PLoS One. 2012;7(11):e49829.PubMedCentralPubMedCrossRef
35.
go back to reference Kenny HA, Krausz T, Yamada SD, Lengyel E. Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer. 2007;121:1463–72.PubMedCrossRef Kenny HA, Krausz T, Yamada SD, Lengyel E. Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer. 2007;121:1463–72.PubMedCrossRef
36.
go back to reference Steinkamp MP, Winner KK, Davies S, Muller C, Zhang Y, Hoffman RM, et al. Ovarian tumor attachment, invasion, and vascularization reflect unique microenvironments in the peritoneum: insights from xenograft and mathematical models. Mol Cell Oncol. 2013;3:1–18. Steinkamp MP, Winner KK, Davies S, Muller C, Zhang Y, Hoffman RM, et al. Ovarian tumor attachment, invasion, and vascularization reflect unique microenvironments in the peritoneum: insights from xenograft and mathematical models. Mol Cell Oncol. 2013;3:1–18.
37.
go back to reference Hanrahan AJ, Schultz N, Westfal ML, Sakr RA, Giri DD, Scarperi S, et al. Genomic complexity and AKT dependence in serous ovarian cancer. Cancer Discov. 2012;2(1):56–67.PubMedCentralPubMedCrossRef Hanrahan AJ, Schultz N, Westfal ML, Sakr RA, Giri DD, Scarperi S, et al. Genomic complexity and AKT dependence in serous ovarian cancer. Cancer Discov. 2012;2(1):56–67.PubMedCentralPubMedCrossRef
38.
go back to reference Niemann C, Brinkmann V, Spitzer E, Hartmann G, Sachs M, Naundorf H, et al. Reconstitution of Mammary Gland Development In Vitro: Requirement of c-met and c-erbB2 Signaling for Branching and Alveolar Morphogenesis. J Cell Biol. 1998;143(2):533–45.PubMedCentralPubMedCrossRef Niemann C, Brinkmann V, Spitzer E, Hartmann G, Sachs M, Naundorf H, et al. Reconstitution of Mammary Gland Development In Vitro: Requirement of c-met and c-erbB2 Signaling for Branching and Alveolar Morphogenesis. J Cell Biol. 1998;143(2):533–45.PubMedCentralPubMedCrossRef
39.
go back to reference Luca AC, Mersch S, Deenen R, Schmidt S, Messner I, Schäfer K-L, et al. Impact of the 3D Microenvironment on Phenotype, Gene Expression, and EGFR Inhibition of Colorectal Cancer Cell Lines. PLoS One. 2013;8(3):e59689.PubMedCentralPubMedCrossRef Luca AC, Mersch S, Deenen R, Schmidt S, Messner I, Schäfer K-L, et al. Impact of the 3D Microenvironment on Phenotype, Gene Expression, and EGFR Inhibition of Colorectal Cancer Cell Lines. PLoS One. 2013;8(3):e59689.PubMedCentralPubMedCrossRef
40.
go back to reference Celli JP, Rizvi I, Blanden AR, Massodi I, Glidden MD, Pogue BW, et al. An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models. Sci Rep. 2014;4(3751):1–10. Celli JP, Rizvi I, Blanden AR, Massodi I, Glidden MD, Pogue BW, et al. An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models. Sci Rep. 2014;4(3751):1–10.
41.
go back to reference Yang Z, Zhao X. A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell–scaffold interaction and chemotherapeutic resistance of anticancer drugs. Int J Nanomed. 2011;5:303–10.CrossRef Yang Z, Zhao X. A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell–scaffold interaction and chemotherapeutic resistance of anticancer drugs. Int J Nanomed. 2011;5:303–10.CrossRef
Metadata
Title
A method to investigate the anti-metabolic activity of anti-cancer agents on ovarian cancer cells cultured in a 96-well high throughput format
Authors
Simon J. Hogg
John J. Evans
Peter H. Sykes
Kenny Chitcholtan
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2015
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-015-0172-0

Other articles of this Issue 1/2015

Journal of Ovarian Research 1/2015 Go to the issue