Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2018

Open Access 01-12-2018 | Research

Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: a feasibility study

Authors: Darren C. James, Matthew C. Solan, Katya N. Mileva

Published in: Journal of Foot and Ankle Research | Issue 1/2018

Login to get access

Abstract

Background

Strengthening the intrinsic foot muscles is a poorly understood and largely overlooked area. In this study, we explore the feasibility of strengthening m. abductor hallucis (AH) with a specific paradigm of neuromuscular electrical stimulation; one which is low-intensity in nature and designed to interleave physiologically-relevant low frequency stimulation with high-frequencies to enhance effective current delivery to spinal motoneurones, and enable a proportion of force produced by the target muscle to be generated from a central origin. We use standard neurophysiological measurements to evaluate the acute (~ 30 min) peripheral and central adaptations in healthy individuals.

Methods

The AH in the dominant foot of nine healthy participants was stimulated with 24 × 15 s trains of square wave (1 ms), constant current (150% of motor threshold), alternating (20 Hz–100 Hz) neuromuscular electrical stimulation interspersed with 45 s rest. Prior to the intervention, peripheral variables were evoked from the AH compound muscle action potential (Mwave) and corresponding twitch force in response to supramaximal (130%) medial plantar nerve stimulation. Central variables were evoked from the motor evoked potential (MEP) in response to suprathreshold (150%) transcranial magnetic stimulation of the motor cortex corresponding to the AH pathway. Follow-up testing occurred immediately, and 30 min after the intervention. In addition, the force-time-integrals (FTI) from the 1st and 24th WPHF trains were analysed as an index of muscle fatigue. All variables except FTI (T-test) were entered for statistical analysis using a single factor repeated measures ANOVA with alpha set at 0.05.

Results

FTI was significantly lower at the end of the electrical intervention compared to that evoked by the first train (p < 0.01). Only significant peripheral nervous system adaptations were observed, consistent with the onset of low-frequency fatigue in the muscle. In most of these variables, the effects persisted for 30 min after the intervention.

Conclusions

An acute session of wide-pulse, high-frequency, low-intensity electrical stimulation delivered directly to abductor hallucis in healthy feet induces muscle fatigue via adaptations at the peripheral level of the neuromuscular system. Our findings would appear to represent the first step in muscle adaptation to training; therefore, there is potential for using WPHF for intrinsic foot muscle strengthening.
Literature
6.
go back to reference Fiolkowski P, Brunt D, Bishop M, Woo R, Horodyski M. Intrinsic pedal musculature support of the medial longitudinal arch: an electromyography study. J Foot Ankle Surg. 2003;42:327–33.CrossRefPubMed Fiolkowski P, Brunt D, Bishop M, Woo R, Horodyski M. Intrinsic pedal musculature support of the medial longitudinal arch: an electromyography study. J Foot Ankle Surg. 2003;42:327–33.CrossRefPubMed
7.
go back to reference Cheung RTH, Sze LKY, Mok NW, Ng GYF. Intrinsic foot muscle volume in experienced runners with and without chronic plantar fasciitis. J Sci Med Sport. 2016;19:713–5.CrossRefPubMed Cheung RTH, Sze LKY, Mok NW, Ng GYF. Intrinsic foot muscle volume in experienced runners with and without chronic plantar fasciitis. J Sci Med Sport. 2016;19:713–5.CrossRefPubMed
8.
go back to reference Mulligan EP, Cook PG. Effect of plantar intrinsic muscle training on medial longitudinal arch morphology and dynamic function. Man Ther. 2013;18:425–30.CrossRefPubMed Mulligan EP, Cook PG. Effect of plantar intrinsic muscle training on medial longitudinal arch morphology and dynamic function. Man Ther. 2013;18:425–30.CrossRefPubMed
9.
go back to reference Kim M-H, Yi C-H, Weon J-H, Cynn H-S, Jung D-Y, Kwon O-Y. Effect of toe-spread-out exercise on hallux valgus angle and cross-sectional area of abductor hallucis muscle in subjects with hallux valgus. J Phys Ther Sci. 2015;27:1019–22.CrossRefPubMedPubMedCentral Kim M-H, Yi C-H, Weon J-H, Cynn H-S, Jung D-Y, Kwon O-Y. Effect of toe-spread-out exercise on hallux valgus angle and cross-sectional area of abductor hallucis muscle in subjects with hallux valgus. J Phys Ther Sci. 2015;27:1019–22.CrossRefPubMedPubMedCentral
10.
go back to reference Boon AJ, Harper CM. Needle EMG of abductor hallucis and peroneus tertius in normal subjects. Muscle Nerve. 2003;27(6):752.CrossRefPubMed Boon AJ, Harper CM. Needle EMG of abductor hallucis and peroneus tertius in normal subjects. Muscle Nerve. 2003;27(6):752.CrossRefPubMed
11.
go back to reference Kura H, Luo ZP, Kitaoka HB, An KN. Quantitative analysis of the intrinsic muscles of the foot. Anat Rec. 1997;249:143–51.CrossRefPubMed Kura H, Luo ZP, Kitaoka HB, An KN. Quantitative analysis of the intrinsic muscles of the foot. Anat Rec. 1997;249:143–51.CrossRefPubMed
12.
go back to reference Wong YS. Influence of the abductor hallucis muscle on the medial arch of the foot: a kinematic and anatomical cadaver study. Foot Ankle Int. 2007;28:617–20.CrossRefPubMed Wong YS. Influence of the abductor hallucis muscle on the medial arch of the foot: a kinematic and anatomical cadaver study. Foot Ankle Int. 2007;28:617–20.CrossRefPubMed
13.
go back to reference Gondin J, Brocca L, Bellinzona E, D’Antona G, Maffiuletti N a, Miotti D, et al. Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. J Appl Physiol. 2011;110:433–50.CrossRefPubMed Gondin J, Brocca L, Bellinzona E, D’Antona G, Maffiuletti N a, Miotti D, et al. Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. J Appl Physiol. 2011;110:433–50.CrossRefPubMed
14.
go back to reference Collins DF. Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation. Exerc Sport Sci Rev. 2007;35:102–9.CrossRefPubMed Collins DF. Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation. Exerc Sport Sci Rev. 2007;35:102–9.CrossRefPubMed
15.
go back to reference Bergquist AJ, Clair JM, Lagerquist O, Mang CS, Okuma Y, Collins DF. Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley. Eur J Appl Physiol. 2011;111:2409–26.CrossRefPubMed Bergquist AJ, Clair JM, Lagerquist O, Mang CS, Okuma Y, Collins DF. Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley. Eur J Appl Physiol. 2011;111:2409–26.CrossRefPubMed
16.
go back to reference Lagerquist O, Walsh LD, Blouin J-S, Collins DF, Gandevia SC. Effect of a peripheral nerve block on torque produced by repetitive electrical stimulation. J Appl Physiol. 2009;107:161–7.CrossRefPubMed Lagerquist O, Walsh LD, Blouin J-S, Collins DF, Gandevia SC. Effect of a peripheral nerve block on torque produced by repetitive electrical stimulation. J Appl Physiol. 2009;107:161–7.CrossRefPubMed
17.
go back to reference Clair-Auger JM, Lagerquist O, Collins DF. Depression and recovery of reflex amplitude during electrical stimulation after spinal cord injury. Clin Neurophysiol. 2013;124:723–31.CrossRefPubMed Clair-Auger JM, Lagerquist O, Collins DF. Depression and recovery of reflex amplitude during electrical stimulation after spinal cord injury. Clin Neurophysiol. 2013;124:723–31.CrossRefPubMed
18.
go back to reference Bergquist AJ, Wiest MJ, Collins DF. Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: quadriceps femoris. J Appl Physiol. 2012;113:78–89.CrossRefPubMed Bergquist AJ, Wiest MJ, Collins DF. Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: quadriceps femoris. J Appl Physiol. 2012;113:78–89.CrossRefPubMed
19.
go back to reference Dean JC, Yates LM, Collins DF. Turning off the central contribution to contractions evoked by neuromuscular electrical stimulation. Muscle Nerve. 2008;38:978–86.CrossRefPubMed Dean JC, Yates LM, Collins DF. Turning off the central contribution to contractions evoked by neuromuscular electrical stimulation. Muscle Nerve. 2008;38:978–86.CrossRefPubMed
20.
go back to reference Baldwin ERL, Klakowicz PM, Collins DF. Wide-pulse-width, high-frequency neuromuscular stimulation: implications for functional electrical stimulation. J Appl Physiol. 2006;101:228–40.CrossRefPubMed Baldwin ERL, Klakowicz PM, Collins DF. Wide-pulse-width, high-frequency neuromuscular stimulation: implications for functional electrical stimulation. J Appl Physiol. 2006;101:228–40.CrossRefPubMed
21.
go back to reference Mang CS, Lagerquist O, Collins DF. Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency. Exp Brain Res. 2010;203:11–20.CrossRefPubMed Mang CS, Lagerquist O, Collins DF. Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency. Exp Brain Res. 2010;203:11–20.CrossRefPubMed
22.
go back to reference Mang CS, Clair JM, Collins DF. Neuromuscular electrical stimulation has a global effect on corticospinal excitability for leg muscles and a focused effect for hand muscles. Exp Brain Res. 2011;209:355–63.CrossRefPubMed Mang CS, Clair JM, Collins DF. Neuromuscular electrical stimulation has a global effect on corticospinal excitability for leg muscles and a focused effect for hand muscles. Exp Brain Res. 2011;209:355–63.CrossRefPubMed
23.
go back to reference Mang CS, Bergquist AJ, Roshko SM, Collins DF. Loss of short-latency afferent inhibition and emergence of afferent facilitation following neuromuscular electrical stimulation. Neurosci Lett. 2012;529:80–5.CrossRefPubMed Mang CS, Bergquist AJ, Roshko SM, Collins DF. Loss of short-latency afferent inhibition and emergence of afferent facilitation following neuromuscular electrical stimulation. Neurosci Lett. 2012;529:80–5.CrossRefPubMed
24.
go back to reference Wegrzyk J, Fouré A, Le FY, Maffiuletti NA, Vilmen C, Guye M, et al. Responders to wide-pulse, high-frequency neuromuscular electrical stimulation show reduced metabolic demand: a 31P-MRS study in humans. PLoS One. 2015;10:1–16.CrossRef Wegrzyk J, Fouré A, Le FY, Maffiuletti NA, Vilmen C, Guye M, et al. Responders to wide-pulse, high-frequency neuromuscular electrical stimulation show reduced metabolic demand: a 31P-MRS study in humans. PLoS One. 2015;10:1–16.CrossRef
25.
go back to reference Neyroud D, Dodd D, Gondin J, Maffiuletti N a, Kayser B, Place N. Wide-pulse-high-frequency neuromuscular stimulation of triceps surae induces greater muscle fatigue compared with conventional stimulation. J Appl Physiol. 2014;116:1281–9.CrossRefPubMed Neyroud D, Dodd D, Gondin J, Maffiuletti N a, Kayser B, Place N. Wide-pulse-high-frequency neuromuscular stimulation of triceps surae induces greater muscle fatigue compared with conventional stimulation. J Appl Physiol. 2014;116:1281–9.CrossRefPubMed
26.
go back to reference Fuglevand AJ, Keen DA, Fuglevand AJ. Re-evaluation of muscle wisdom in the human adductor pollicis using physiological rates of stimulation. J Physiol. 2003;549(Pt 3):865–75.CrossRefPubMedPubMedCentral Fuglevand AJ, Keen DA, Fuglevand AJ. Re-evaluation of muscle wisdom in the human adductor pollicis using physiological rates of stimulation. J Physiol. 2003;549(Pt 3):865–75.CrossRefPubMedPubMedCentral
27.
go back to reference Jones DA, Bigland-Ritchie B, Edwards RHT. Excitation frequency and muscle fatigue: mechanical responses during voluntary and stimulated contractions. Exp Neurol. 1979;64:401–13.CrossRefPubMed Jones DA, Bigland-Ritchie B, Edwards RHT. Excitation frequency and muscle fatigue: mechanical responses during voluntary and stimulated contractions. Exp Neurol. 1979;64:401–13.CrossRefPubMed
28.
go back to reference James DC, Chesters T, Sumners DP, Cook DP, Green DA, Mileva KN. Wide-pulse electrical stimulation to an intrinsic foot muscle induces acute functional changes in forefoot-rearfoot coupling behaviour during walking. Int J Sports Med. 2013;34:438–43.PubMed James DC, Chesters T, Sumners DP, Cook DP, Green DA, Mileva KN. Wide-pulse electrical stimulation to an intrinsic foot muscle induces acute functional changes in forefoot-rearfoot coupling behaviour during walking. Int J Sports Med. 2013;34:438–43.PubMed
31.
go back to reference Dimitrova NA, Dimitrov GV. Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies. J Electromyogr Kinesiol. 2003;13:13–36.CrossRefPubMed Dimitrova NA, Dimitrov GV. Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies. J Electromyogr Kinesiol. 2003;13:13–36.CrossRefPubMed
32.
go back to reference Hill CA, Thompson MW, Ruell PA, Thom JM, White MJ. Sarcoplasmic reticulum function and muscle contractile character following fatiguing exercise in humans. J Physiol. 2001;531:871–8.CrossRefPubMedPubMedCentral Hill CA, Thompson MW, Ruell PA, Thom JM, White MJ. Sarcoplasmic reticulum function and muscle contractile character following fatiguing exercise in humans. J Physiol. 2001;531:871–8.CrossRefPubMedPubMedCentral
33.
go back to reference Fisher MA. F-waves – physiology and clinical uses. Sci World J. 2007;7:144–60.CrossRef Fisher MA. F-waves – physiology and clinical uses. Sci World J. 2007;7:144–60.CrossRef
34.
go back to reference Nakamae T, Tanaka N, Nakanishi K, Fujimoto Y, Sasaki H, Kamei N, et al. Quantitative assessment of myelopathy patients using motor evoked potentials produced by transcranial magnetic stimulation. Eur Spine J. 2010;19:685–90.CrossRefPubMed Nakamae T, Tanaka N, Nakanishi K, Fujimoto Y, Sasaki H, Kamei N, et al. Quantitative assessment of myelopathy patients using motor evoked potentials produced by transcranial magnetic stimulation. Eur Spine J. 2010;19:685–90.CrossRefPubMed
35.
go back to reference Keeton RB, Binder-macleod SA, Keeton RB, Binder-macleod SA. Low-Frequency Fatigue. J Am Phys Ther Assoc. 2006;86:1146–50. Keeton RB, Binder-macleod SA, Keeton RB, Binder-macleod SA. Low-Frequency Fatigue. J Am Phys Ther Assoc. 2006;86:1146–50.
36.
go back to reference Bigland-Ritchie B, Jones DA, Woods JJ. Excitation-frequency and muscle fatigue: electrical responses during human voluntary and stimulated contractions. Exp Neurol. 1979;64:414–27.CrossRefPubMed Bigland-Ritchie B, Jones DA, Woods JJ. Excitation-frequency and muscle fatigue: electrical responses during human voluntary and stimulated contractions. Exp Neurol. 1979;64:414–27.CrossRefPubMed
38.
go back to reference Perera A, Perera AM, Orth F, Mason L, Eng M, Stephens MM. The pathogenesis of hallux Valgus. J Bone Joint Surg Am. 2011;93:1650–61.CrossRefPubMed Perera A, Perera AM, Orth F, Mason L, Eng M, Stephens MM. The pathogenesis of hallux Valgus. J Bone Joint Surg Am. 2011;93:1650–61.CrossRefPubMed
40.
go back to reference Menz H, Lord S. Gait inestability in older people with hallux valgus. Foot Ankle Int. 2005;26:483–9.CrossRefPubMed Menz H, Lord S. Gait inestability in older people with hallux valgus. Foot Ankle Int. 2005;26:483–9.CrossRefPubMed
Metadata
Title
Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: a feasibility study
Authors
Darren C. James
Matthew C. Solan
Katya N. Mileva
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2018
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/s13047-018-0258-1

Other articles of this Issue 1/2018

Journal of Foot and Ankle Research 1/2018 Go to the issue