Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2015

Open Access 01-12-2015 | Research

Insertion of a pressure sensing arrayminimally affects hindfoot bone kinematics

Authors: Tassos Natsakis, Josefien Burg, Greta Dereymaeker, Ilse Jonkers, Jos Vander Sloten

Published in: Journal of Foot and Ankle Research | Issue 1/2015

Login to get access

Abstract

Background

Understanding the development of ankle osteoarthritis (OA) is of high importance and interest; however its causality is poorly understood and several links to joint loading conditions have been made. One way of quantifying joint loading conditions is by measuring the intra-articular pressure distribution during gait simulations performed by in-vitro experimental set-ups. However the effect of inserting a pressure sensing array in the ankle joint could potentially disturb the proper kinematics and therefore the loading conditions.

Methods

In this study, we performed in-vitro gait simulations in 7 cadaveric feet, before and after inserting a pressure sensing array and quantified the effect on the joints range of motion (ROM). The gait was simulated with a stance phase duration of one second using a custom build cadaveric gait simulator (CGS).

Results

The results show a limited effect in the ROM for all the joints of the hind foot, not exceeding the variability observed in specimens without a sensor. However, no consistent direction (increase/decrease) can be observed.

Conclusion

The results suggest that even though the effect of inserting a pressure sensing array is minimal, it needs to be evaluated against the demands/requirements of the application.
Literature
2.
go back to reference Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and Osteoarthritis. Instr Course Lect -American Acad Orthop Surg. 2005; 54:465–80. Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and Osteoarthritis. Instr Course Lect -American Acad Orthop Surg. 2005; 54:465–80.
3.
go back to reference Anderson DD, Van Hofwegen C, Marsh JL, Brown TD. Is elevated contact stress predictive of post-traumatic osteoarthritis for imprecisely reduced tibial plafond fractures?J Orthop Res. 2011; 29(1):33–9.CrossRefPubMedPubMedCentral Anderson DD, Van Hofwegen C, Marsh JL, Brown TD. Is elevated contact stress predictive of post-traumatic osteoarthritis for imprecisely reduced tibial plafond fractures?J Orthop Res. 2011; 29(1):33–9.CrossRefPubMedPubMedCentral
4.
go back to reference Buckwalter JA, Anderson DD, Brown TD, Tochigi Y, Martin Ja. The roles of mechanical stresses in the pathogenesis of osteoarthritis: implications for treatment of joint injuries. Cartilage. 2013; 4(4):286–94.CrossRefPubMedPubMedCentral Buckwalter JA, Anderson DD, Brown TD, Tochigi Y, Martin Ja. The roles of mechanical stresses in the pathogenesis of osteoarthritis: implications for treatment of joint injuries. Cartilage. 2013; 4(4):286–94.CrossRefPubMedPubMedCentral
5.
go back to reference Krause FG, Schmid T. Ankle arthrodesis versus total ankle replacement: how do I decide?Foot Ankle Clin. 2012; 17(4):529–43.CrossRefPubMed Krause FG, Schmid T. Ankle arthrodesis versus total ankle replacement: how do I decide?Foot Ankle Clin. 2012; 17(4):529–43.CrossRefPubMed
6.
go back to reference Valderrabano V, Horisberger M, Russell I, Dougall H, Hintermann B. Etiology of ankle osteoarthritis. Clin Orthop Relat Res. 2009; 467(7):1800–6.CrossRefPubMed Valderrabano V, Horisberger M, Russell I, Dougall H, Hintermann B. Etiology of ankle osteoarthritis. Clin Orthop Relat Res. 2009; 467(7):1800–6.CrossRefPubMed
7.
go back to reference Horisberger M, Valderrabano V. Ankle Osteoarthritis - a review of the current state of knowledge. Eur Musculoskelet Rev. 2011; 6(2):114–8. Horisberger M, Valderrabano V. Ankle Osteoarthritis - a review of the current state of knowledge. Eur Musculoskelet Rev. 2011; 6(2):114–8.
8.
go back to reference Anderson DD, Goldsworthy JK, Li W, James Rudert M, Tochigi Y, Brown TD. Physical validation of a patient-specific contact finite element model of the ankle. J Biomech. 2007; 40(8):1662–9.CrossRefPubMedPubMedCentral Anderson DD, Goldsworthy JK, Li W, James Rudert M, Tochigi Y, Brown TD. Physical validation of a patient-specific contact finite element model of the ankle. J Biomech. 2007; 40(8):1662–9.CrossRefPubMedPubMedCentral
9.
go back to reference Anderson DD, Goldsworthy JK, Shivanna K, Grosland NM, Pedersen DR, Thomas TP. Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degeneration propensity. Biomech Model Mechanobiol. 2006; 5(2–3):82–9.CrossRefPubMedPubMedCentral Anderson DD, Goldsworthy JK, Shivanna K, Grosland NM, Pedersen DR, Thomas TP. Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degeneration propensity. Biomech Model Mechanobiol. 2006; 5(2–3):82–9.CrossRefPubMedPubMedCentral
10.
go back to reference Li G, Wan L, Kozanek M. Determination of real-time in-vivo cartilage contact deformation in the ankle joint. J Biomech. 2008; 41(1):128–36.CrossRefPubMed Li G, Wan L, Kozanek M. Determination of real-time in-vivo cartilage contact deformation in the ankle joint. J Biomech. 2008; 41(1):128–36.CrossRefPubMed
11.
go back to reference Sasimontonkul S, Bay BK, Pavol MJ. Bone contact forces on the distal tibia during the stance phase of running. J Biomech. 2007; 40(15):3503–9.CrossRefPubMed Sasimontonkul S, Bay BK, Pavol MJ. Bone contact forces on the distal tibia during the stance phase of running. J Biomech. 2007; 40(15):3503–9.CrossRefPubMed
12.
go back to reference Moissenet F, Chèze L, Dumas R. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait. J Biomech. 2014; 47(1):50–8.CrossRefPubMed Moissenet F, Chèze L, Dumas R. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait. J Biomech. 2014; 47(1):50–8.CrossRefPubMed
13.
go back to reference Calhoun JH, Li F, Ledbetter BR, Viegas SF. A comprehensive study of pressure distribution in the ankle joint with inversion and eversion. Foot Ankle Int. 1994; 15(3):125–33.CrossRefPubMed Calhoun JH, Li F, Ledbetter BR, Viegas SF. A comprehensive study of pressure distribution in the ankle joint with inversion and eversion. Foot Ankle Int. 1994; 15(3):125–33.CrossRefPubMed
14.
go back to reference Matricali GA, Bartels W, Labey L, Dereymaeker GPE, Luyten FP, Vander Sloten J. High inter-specimen variability of baseline data for the tibio-talar contact area. Clin Biomech. 2009; 24(1):117–120.CrossRef Matricali GA, Bartels W, Labey L, Dereymaeker GPE, Luyten FP, Vander Sloten J. High inter-specimen variability of baseline data for the tibio-talar contact area. Clin Biomech. 2009; 24(1):117–120.CrossRef
15.
go back to reference Suckel A, Muller O, Wachter N, Kluba T. In vitro measurement of intraarticular pressure in the ankle joint Knee Surgery. Sport Traumatol Arthrosc. 2010; 18(5):664–8.CrossRef Suckel A, Muller O, Wachter N, Kluba T. In vitro measurement of intraarticular pressure in the ankle joint Knee Surgery. Sport Traumatol Arthrosc. 2010; 18(5):664–8.CrossRef
16.
go back to reference Anderson AE, Ellis BJ, Maas SA, Peters CL, Weiss JA. Validation of finite element predictions of cartilage contact pressure in the human hip joint. J Biomech Eng. 2008; 130(5):1–10.CrossRef Anderson AE, Ellis BJ, Maas SA, Peters CL, Weiss JA. Validation of finite element predictions of cartilage contact pressure in the human hip joint. J Biomech Eng. 2008; 130(5):1–10.CrossRef
17.
go back to reference Potthast W, Lersch C, Segesser B, Koebke J, Brüggemann G-P. Intraarticular pressure distribution in the talocrural joint is related to lower leg muscle forces. Clin Biomech (Bristol, Avon). 2008; 23(5):632–9.CrossRef Potthast W, Lersch C, Segesser B, Koebke J, Brüggemann G-P. Intraarticular pressure distribution in the talocrural joint is related to lower leg muscle forces. Clin Biomech (Bristol, Avon). 2008; 23(5):632–9.CrossRef
18.
go back to reference Jung H-G, Parks BG, Nguyen A, Schon LC. Effect of tibiotalar joint arthrodesis on adjacent tarsal joint pressure in a cadaver model. Foot ankle Int Am Orthop Foot Ankle Soc Swiss Foot Ankle Soc. 2007; 28(1):103–8.CrossRef Jung H-G, Parks BG, Nguyen A, Schon LC. Effect of tibiotalar joint arthrodesis on adjacent tarsal joint pressure in a cadaver model. Foot ankle Int Am Orthop Foot Ankle Soc Swiss Foot Ankle Soc. 2007; 28(1):103–8.CrossRef
19.
go back to reference Lee DG, Davis BL. Assessment of the effects of diabetes on midfoot joint pressures using a robotic gait simulator. Foot ankle Int Am Orthop Foot Ankle Soc Swiss Foot Ankle Soc. 2009; 30(8):767–72.CrossRef Lee DG, Davis BL. Assessment of the effects of diabetes on midfoot joint pressures using a robotic gait simulator. Foot ankle Int Am Orthop Foot Ankle Soc Swiss Foot Ankle Soc. 2009; 30(8):767–72.CrossRef
20.
go back to reference Michelson JD, Checcone M, Kuhn T, Varner K. Intra-articular load distribution in the human ankle joint during motion. Foot Ankle Int. 2001; 22(3):226–33.PubMed Michelson JD, Checcone M, Kuhn T, Varner K. Intra-articular load distribution in the human ankle joint during motion. Foot Ankle Int. 2001; 22(3):226–33.PubMed
21.
go back to reference Peeters K, Natsakis T, Burg J, Spaepen P, Jonkers I, Dereymaeker G. An in vitro approach to the evaluation of foot-ankle kinematics: performance evaluation of a custom-built gait simulator. Proc Inst Mech Eng H. 2013; 227(9):955–67.CrossRefPubMed Peeters K, Natsakis T, Burg J, Spaepen P, Jonkers I, Dereymaeker G. An in vitro approach to the evaluation of foot-ankle kinematics: performance evaluation of a custom-built gait simulator. Proc Inst Mech Eng H. 2013; 227(9):955–67.CrossRefPubMed
22.
go back to reference Bogey R, Perry J, Gitter A. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait. IEEE Trans Neural Syst Rehabil Eng. 2005; 13(3):302–10.CrossRefPubMed Bogey R, Perry J, Gitter A. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait. IEEE Trans Neural Syst Rehabil Eng. 2005; 13(3):302–10.CrossRefPubMed
23.
go back to reference Natsakis T, Peeters K, Burg F, Dereymaeker G, Vander Sloten J, Jonkers I. Specimen-specific tibial kinematics model for in vitro gait simulations. Proc Inst Mech Eng Part H J Eng Med. 2012; 227(4):454–63.CrossRef Natsakis T, Peeters K, Burg F, Dereymaeker G, Vander Sloten J, Jonkers I. Specimen-specific tibial kinematics model for in vitro gait simulations. Proc Inst Mech Eng Part H J Eng Med. 2012; 227(4):454–63.CrossRef
24.
go back to reference Natsakis T, Burg J, Dereymaeker G, Jonkers I, Vander Sloten J. Inertial control as novel technique for in vitro gait simulations. J Biomech. 2015; 48(2):392–5.CrossRefPubMed Natsakis T, Burg J, Dereymaeker G, Jonkers I, Vander Sloten J. Inertial control as novel technique for in vitro gait simulations. J Biomech. 2015; 48(2):392–5.CrossRefPubMed
25.
go back to reference Okita N, Meyers S, Challis JH, Sharkey N. Midtarsal joint locking: new perspectives on an old paradigm. J Orthop Res. 2014; 32(1):110–5.CrossRefPubMed Okita N, Meyers S, Challis JH, Sharkey N. Midtarsal joint locking: new perspectives on an old paradigm. J Orthop Res. 2014; 32(1):110–5.CrossRefPubMed
Metadata
Title
Insertion of a pressure sensing arrayminimally affects hindfoot bone kinematics
Authors
Tassos Natsakis
Josefien Burg
Greta Dereymaeker
Ilse Jonkers
Jos Vander Sloten
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2015
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/s13047-015-0081-x

Other articles of this Issue 1/2015

Journal of Foot and Ankle Research 1/2015 Go to the issue