Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2014

Open Access 01-12-2014 | Research

Changes in talocrural and subtalar joint kinematics of barefoot versus shod forefoot landing

Authors: Mako Fukano, Toru Fukubayashi

Published in: Journal of Foot and Ankle Research | Issue 1/2014

Login to get access

Abstract

Background

Synergetic talocrural and subtalar joint movements allow adaptation to different footwear and/or surface conditions. Therefore, knowledge of kinematic differences between barefoot and shod conditions is valuable for the study of adaptations to footwear conditions. The objective of this study was to assess the kinematic differences in the talocrural and subtalar joints during barefoot and shod landing.

Methods

Seven healthy participants (4 males and 3 females) participated in a landing trial under barefoot and shod conditions. Fluoroscopic images and forceplate data were collected simultaneously to calculate the talocrural and subtalar joint kinematics and the vertical ground reaction force.

Results

Upon toe contact, the plantarflexion angle of the talocrural joint during the barefoot condition was significantly larger than that during the shod condition (barefoot, 20.5 ± 7.1°, shod, 17.9 ± 8.3°, p =0.03). From toe contact to heel contact, the angular changes at the talocrural and subtalar joint were not significantly different between the barefoot and shod conditions; however, the changes in the subtalar eversion angles in the barefoot condition, from heel contact to 150 ms after toe contact, were significantly larger than those in the shod condition.

Conclusions

These results suggest that footwear was able to reduce the eversion angle of the subtalar joint after heel contact during landing; the effect of wearing footwear was quite limited. Therefore, induced rearfoot kinematic alterations to prevent or manage injuries by neutral-type footwear are likely to be impractical.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nester CJ, van der Linden ML, Bowker P: Effect of foot orthoses on the kinematics and kinetics of normal walking gait. Gait Posture. 2003, 17: 180-187. 10.1016/S0966-6362(02)00065-6.CrossRefPubMed Nester CJ, van der Linden ML, Bowker P: Effect of foot orthoses on the kinematics and kinetics of normal walking gait. Gait Posture. 2003, 17: 180-187. 10.1016/S0966-6362(02)00065-6.CrossRefPubMed
2.
go back to reference Fukano M, Fukubayshi T, Nagano Y, Kubota J: Changes in tibial rotation during locomotion: effects of shoe type. Footwear Sci. 2008, 1: 19-23. 10.1080/19424280902950456.CrossRef Fukano M, Fukubayshi T, Nagano Y, Kubota J: Changes in tibial rotation during locomotion: effects of shoe type. Footwear Sci. 2008, 1: 19-23. 10.1080/19424280902950456.CrossRef
3.
go back to reference Richards CE, Magin PJ, Callister R: Is your prescription of distance running shoes evidence-based?. Br J Sports Med. 2009, 43: 159-162. 10.1136/bjsm.2008.046680.CrossRefPubMed Richards CE, Magin PJ, Callister R: Is your prescription of distance running shoes evidence-based?. Br J Sports Med. 2009, 43: 159-162. 10.1136/bjsm.2008.046680.CrossRefPubMed
4.
go back to reference Knapik JJ, Brosch LC, Venuto M, Swedler DI, Bullock SH, Gaines LS, Murphy RJ, Tchandja J, Jones BH: Effect on injuries of assigning shoes based on foot shape in air force basic training. Am J Prev Med. 2010, 38: S197-211. 10.1016/j.amepre.2009.10.013.CrossRefPubMed Knapik JJ, Brosch LC, Venuto M, Swedler DI, Bullock SH, Gaines LS, Murphy RJ, Tchandja J, Jones BH: Effect on injuries of assigning shoes based on foot shape in air force basic training. Am J Prev Med. 2010, 38: S197-211. 10.1016/j.amepre.2009.10.013.CrossRefPubMed
5.
go back to reference Knapik JJ, Trone DW, Swedler DI, Villasenor A, Bullock SH, Schmied E, Bockelman T, Han P, Jones BH: Injury reduction effectiveness of assigning running shoes based on plantar shape in Marine Corps basic training. Am J Sports Med. 2010, 38: 1759-1767. 10.1177/0363546510369548.CrossRefPubMed Knapik JJ, Trone DW, Swedler DI, Villasenor A, Bullock SH, Schmied E, Bockelman T, Han P, Jones BH: Injury reduction effectiveness of assigning running shoes based on plantar shape in Marine Corps basic training. Am J Sports Med. 2010, 38: 1759-1767. 10.1177/0363546510369548.CrossRefPubMed
6.
go back to reference Ryan MB, Valiant GA, McDonald K, Taunton JE: The effect of three different levels of footwear stability on pain outcomes in women runners: a randomised control trial. Br J Sports Med. 2011, 45: 715-721. 10.1136/bjsm.2009.069849.CrossRefPubMed Ryan MB, Valiant GA, McDonald K, Taunton JE: The effect of three different levels of footwear stability on pain outcomes in women runners: a randomised control trial. Br J Sports Med. 2011, 45: 715-721. 10.1136/bjsm.2009.069849.CrossRefPubMed
7.
go back to reference Nester CJ, Liu AM, Ward E, Howard D, Cocheba J, Derrick T, Patterson P: In vitro study of foot kinematics using a dynamic walking cadaver model. J Biomech. 2007, 40: 1927-1937. 10.1016/j.jbiomech.2006.09.008.CrossRefPubMed Nester CJ, Liu AM, Ward E, Howard D, Cocheba J, Derrick T, Patterson P: In vitro study of foot kinematics using a dynamic walking cadaver model. J Biomech. 2007, 40: 1927-1937. 10.1016/j.jbiomech.2006.09.008.CrossRefPubMed
8.
go back to reference Westblad P, Hashimoto T, Winson I, Lundberg A, Arndt A: Differences in ankle-joint complex motion during the stance phase of walking as measured by superficial and bone-anchored markers. Foot Ankle Int. 2002, 23: 856-863.PubMed Westblad P, Hashimoto T, Winson I, Lundberg A, Arndt A: Differences in ankle-joint complex motion during the stance phase of walking as measured by superficial and bone-anchored markers. Foot Ankle Int. 2002, 23: 856-863.PubMed
9.
go back to reference Stacoff A, Nigg BM, Reinschmidt C, van den Bogert AJ, Lundberg A: Tibiocalcaneal kinematics of barefoot versus shod running. J Biomech. 2000, 33: 1387-1395. 10.1016/S0021-9290(00)00116-0.CrossRefPubMed Stacoff A, Nigg BM, Reinschmidt C, van den Bogert AJ, Lundberg A: Tibiocalcaneal kinematics of barefoot versus shod running. J Biomech. 2000, 33: 1387-1395. 10.1016/S0021-9290(00)00116-0.CrossRefPubMed
10.
go back to reference Stacoff A, Reinschmidt C, Nigg BM, van den Bogert AJ, Lundberg A, Denoth J, Stussi E: Effects of foot orthoses on skeletal motion during running. Clin Biomech (Bristol, Avon). 2000, 15: 54-64. 10.1016/S0268-0033(99)00028-5.CrossRef Stacoff A, Reinschmidt C, Nigg BM, van den Bogert AJ, Lundberg A, Denoth J, Stussi E: Effects of foot orthoses on skeletal motion during running. Clin Biomech (Bristol, Avon). 2000, 15: 54-64. 10.1016/S0268-0033(99)00028-5.CrossRef
11.
go back to reference Stacoff A, Reinschmidt C, Nigg BM, Van Den Bogert AJ, Lundberg A, Denoth J, Stussi E: Effects of shoe sole construction on skeletal motion during running. Med Sci Sports Exerc. 2001, 33: 311-319. 10.1097/00005768-200102000-00022.CrossRefPubMed Stacoff A, Reinschmidt C, Nigg BM, Van Den Bogert AJ, Lundberg A, Denoth J, Stussi E: Effects of shoe sole construction on skeletal motion during running. Med Sci Sports Exerc. 2001, 33: 311-319. 10.1097/00005768-200102000-00022.CrossRefPubMed
12.
go back to reference Eslami M, Begon M, Hinse S, Sadeghi H, Popov P, Allard P: Effect of foot orthoses on magnitude and timing of rearfoot and tibial motions, ground reaction force and knee moment during running. J Sci Med Sport. 2009, 12: 679-684. 10.1016/j.jsams.2008.05.001.CrossRefPubMed Eslami M, Begon M, Hinse S, Sadeghi H, Popov P, Allard P: Effect of foot orthoses on magnitude and timing of rearfoot and tibial motions, ground reaction force and knee moment during running. J Sci Med Sport. 2009, 12: 679-684. 10.1016/j.jsams.2008.05.001.CrossRefPubMed
13.
go back to reference Ferber R, Davis IM, Williams DS: Effect of foot orthotics on rearfoot and tibia joint coupling patterns and variability. J Biomech. 2005, 38: 477-483. 10.1016/j.jbiomech.2004.04.019.CrossRefPubMed Ferber R, Davis IM, Williams DS: Effect of foot orthotics on rearfoot and tibia joint coupling patterns and variability. J Biomech. 2005, 38: 477-483. 10.1016/j.jbiomech.2004.04.019.CrossRefPubMed
14.
go back to reference de Asla RJ, Wan L, Rubash HE, Li G: Six DOF in vivo kinematics of the ankle joint complex: application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique. J Orthop Res. 2006, 24: 1019-1027. 10.1002/jor.20142.CrossRefPubMed de Asla RJ, Wan L, Rubash HE, Li G: Six DOF in vivo kinematics of the ankle joint complex: application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique. J Orthop Res. 2006, 24: 1019-1027. 10.1002/jor.20142.CrossRefPubMed
15.
go back to reference Yamaguchi S, Sasho T, Kato H, Kuroyanagi Y, Banks SA: Ankle and subtalar kinematics during dorsiflexion-plantarflexion activities. Foot Ankle Int. 2009, 30: 361-366. 10.3113/FAI.2009.0361.CrossRefPubMed Yamaguchi S, Sasho T, Kato H, Kuroyanagi Y, Banks SA: Ankle and subtalar kinematics during dorsiflexion-plantarflexion activities. Foot Ankle Int. 2009, 30: 361-366. 10.3113/FAI.2009.0361.CrossRefPubMed
16.
go back to reference List R, Foresti M, Gerber H, Goldhahn J, Rippstein P, Stussi E: Three-dimensional kinematics of an unconstrained ankle arthroplasty: a preliminary in vivo videofluoroscopic feasibility study. Foot Ankle Int. 2012, 33: 883-892. 10.3113/FAI.2012.0883.CrossRefPubMed List R, Foresti M, Gerber H, Goldhahn J, Rippstein P, Stussi E: Three-dimensional kinematics of an unconstrained ankle arthroplasty: a preliminary in vivo videofluoroscopic feasibility study. Foot Ankle Int. 2012, 33: 883-892. 10.3113/FAI.2012.0883.CrossRefPubMed
17.
go back to reference Yamaguchi S, Tanaka Y, Kosugi S, Takakura Y, Sasho T, Banks SA: In vivo kinematics of two-component total ankle arthroplasty during non-weightbearing and weightbearing dorsiflexion/plantarflexion. J Biomech. 2011, 44: 995-1000. 10.1016/j.jbiomech.2011.02.078.CrossRefPubMed Yamaguchi S, Tanaka Y, Kosugi S, Takakura Y, Sasho T, Banks SA: In vivo kinematics of two-component total ankle arthroplasty during non-weightbearing and weightbearing dorsiflexion/plantarflexion. J Biomech. 2011, 44: 995-1000. 10.1016/j.jbiomech.2011.02.078.CrossRefPubMed
18.
go back to reference Campbell KJ, Wilson KJ, LaPrade RF, Clanton TO: Normative rearfoot motion during barefoot and shod walking using biplane fluoroscopy.Knee Surg Sports Traumatol Arthrosc in press., Campbell KJ, Wilson KJ, LaPrade RF, Clanton TO: Normative rearfoot motion during barefoot and shod walking using biplane fluoroscopy.Knee Surg Sports Traumatol Arthrosc in press.,
19.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006, 31: 1116-1128. 10.1016/j.neuroimage.2006.01.015.CrossRefPubMed Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006, 31: 1116-1128. 10.1016/j.neuroimage.2006.01.015.CrossRefPubMed
20.
go back to reference Fukano M, Kuroyanagi Y, Fukubayashi T, Banks S: Three-dimensional kinematics of the talocrural and subtalar joints during drop landing. J Appl Biomech. 2014, 30: 160-165. 10.1123/jab.2012-0192.CrossRefPubMed Fukano M, Kuroyanagi Y, Fukubayashi T, Banks S: Three-dimensional kinematics of the talocrural and subtalar joints during drop landing. J Appl Biomech. 2014, 30: 160-165. 10.1123/jab.2012-0192.CrossRefPubMed
21.
go back to reference Banks SA, Hodge WA: 2003 Hap Paul Award Paper of the International Society for Technology in Arthroplasty. Design and activity dependence of kinematics in fixed and mobile-bearing knee arthroplasties. J Arthroplasty. 2004, 19: 809-816. 10.1016/j.arth.2004.04.011.CrossRefPubMed Banks SA, Hodge WA: 2003 Hap Paul Award Paper of the International Society for Technology in Arthroplasty. Design and activity dependence of kinematics in fixed and mobile-bearing knee arthroplasties. J Arthroplasty. 2004, 19: 809-816. 10.1016/j.arth.2004.04.011.CrossRefPubMed
22.
go back to reference Grood ES, Suntay WJ: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983, 105: 136-144. 10.1115/1.3138397.CrossRefPubMed Grood ES, Suntay WJ: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983, 105: 136-144. 10.1115/1.3138397.CrossRefPubMed
23.
go back to reference De Wit B, De Clercq D, Aerts P: Biomechanical analysis of the stance phase during barefoot and shod running. J Biomech. 2000, 33: 269-278. 10.1016/S0021-9290(99)00192-X.CrossRefPubMed De Wit B, De Clercq D, Aerts P: Biomechanical analysis of the stance phase during barefoot and shod running. J Biomech. 2000, 33: 269-278. 10.1016/S0021-9290(99)00192-X.CrossRefPubMed
24.
go back to reference Cheung RT, Chung RC, Ng GY: Efficacies of different external controls for excessive foot pronation: a meta-analysis. Br J Sports Med. 2011, 45: 743-751. 10.1136/bjsm.2010.079780.CrossRefPubMed Cheung RT, Chung RC, Ng GY: Efficacies of different external controls for excessive foot pronation: a meta-analysis. Br J Sports Med. 2011, 45: 743-751. 10.1136/bjsm.2010.079780.CrossRefPubMed
25.
go back to reference Van Gheluwe B, Kerwin D, Roosen P, Tielemans R: The influence of heel fit on rearfoot motion in running shoes. J Appl Biomech. 1999, 15: 361-372. Van Gheluwe B, Kerwin D, Roosen P, Tielemans R: The influence of heel fit on rearfoot motion in running shoes. J Appl Biomech. 1999, 15: 361-372.
26.
go back to reference Huerta JP, Garcia JMA, Matamoros EC, Matamoros JC, Martinez TD: Relationship of body mass index, ankle dorsiflexion, and foot pronation on plantar fascia thickness in healthy, asymptomatic subjects. J Am Podiatr Med Assoc. 2008, 98: 379-385. 10.7547/0980379.CrossRef Huerta JP, Garcia JMA, Matamoros EC, Matamoros JC, Martinez TD: Relationship of body mass index, ankle dorsiflexion, and foot pronation on plantar fascia thickness in healthy, asymptomatic subjects. J Am Podiatr Med Assoc. 2008, 98: 379-385. 10.7547/0980379.CrossRef
27.
go back to reference Sharma J, Golby J, Greeves J, Spears IR: Biomechanical and lifestyle risk factors for medial tibia stress syndrome in army recruits: a prospective study. Gait Posture. 2011, 33: 361-365. 10.1016/j.gaitpost.2010.12.002.CrossRefPubMed Sharma J, Golby J, Greeves J, Spears IR: Biomechanical and lifestyle risk factors for medial tibia stress syndrome in army recruits: a prospective study. Gait Posture. 2011, 33: 361-365. 10.1016/j.gaitpost.2010.12.002.CrossRefPubMed
28.
go back to reference Wang CL, Cheng CK, Chen CW, Lu CM, Hang YS, Liu TK: Contact areas and pressure distributions in the subtalar joint. J Biomech. 1995, 28: 269-279. 10.1016/0021-9290(94)00076-G.CrossRefPubMed Wang CL, Cheng CK, Chen CW, Lu CM, Hang YS, Liu TK: Contact areas and pressure distributions in the subtalar joint. J Biomech. 1995, 28: 269-279. 10.1016/0021-9290(94)00076-G.CrossRefPubMed
29.
go back to reference Lersch C, Grotsch A, Segesser B, Koebke J, Bruggemann GP, Potthast W: Influence of calcaneus angle and muscle forces on strain distribution in the human Achilles tendon. Clin Biomech (Bristol, Avon). 2012, 27: 955-961. 10.1016/j.clinbiomech.2012.07.001.CrossRef Lersch C, Grotsch A, Segesser B, Koebke J, Bruggemann GP, Potthast W: Influence of calcaneus angle and muscle forces on strain distribution in the human Achilles tendon. Clin Biomech (Bristol, Avon). 2012, 27: 955-961. 10.1016/j.clinbiomech.2012.07.001.CrossRef
30.
go back to reference Goto A, Moritomo H, Itohara T, Watanabe T, Sugamoto K: Three-dimensional in vivo kinematics of the subtalar joint during dorsi-plantarflexion and inversion-eversion. Foot Ankle Int. 2009, 30: 432-438. 10.3113/FAI.2009.0432.PubMed Goto A, Moritomo H, Itohara T, Watanabe T, Sugamoto K: Three-dimensional in vivo kinematics of the subtalar joint during dorsi-plantarflexion and inversion-eversion. Foot Ankle Int. 2009, 30: 432-438. 10.3113/FAI.2009.0432.PubMed
Metadata
Title
Changes in talocrural and subtalar joint kinematics of barefoot versus shod forefoot landing
Authors
Mako Fukano
Toru Fukubayashi
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2014
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/s13047-014-0042-9

Other articles of this Issue 1/2014

Journal of Foot and Ankle Research 1/2014 Go to the issue