Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2020

01-12-2020 | Metastasis | Research

MIEF2 over-expression promotes tumor growth and metastasis through reprogramming of glucose metabolism in ovarian cancer

Authors: Shuhua Zhao, Xiaohong Zhang, Yuan Shi, Lu Cheng, Tingting Song, Bing Wu, Jia Li, Hong Yang

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2020

Login to get access

Abstract

Background

Increasing evidence has revealed the close link between mitochondrial dynamic dysfunction and cancer. MIEF2 (mitochondrial elongation factor 2) is mitochondrial outer membrane protein that functions in the regulation of mitochondrial fission. However, the expression, clinical significance and biological functions of MIEF2 are still largely unclear in human cancers, especially in ovarian cancer (OC).

Methods

The expression and clinical significance of MIEF2 were determined by qRT-PCR, western blot and immunohistochemistry analyses in tissues and cell lines of OC. The biological functions of MIEF2 in OC were determined by in vitro and in vivo cell growth and metastasis assays. Furthermore, the effect of MIEF2 on metabolic reprogramming of OC was determined by metabolomics and glucose metabolism analyses.

Results

MIEF2 expression was significantly increased in OC mainly due to the down-regulation of miR-424-5p, which predicts poor survival for patients with OC. Knockdown of MIEF2 significantly suppressed OC cell growth and metastasis both in vitro and in vivo by inhibiting G1-S cell transition, epithelial-to-mesenchymal transition (EMT) and inducing cell apoptosis, while forced expression of MIEF2 had the opposite effects. Mechanistically, mitochondrial fragmentation-suppressed cristae formation and thus glucose metabolism switch from oxidative phosphorylation to glycolysis was found to be involved in the promotion of growth and metastasis by MIEF2 in OC cells.

Conclusions

MIEF2 plays a critical role in the progression of OC and may serve as a valuable prognostic biomarker and therapeutic target in the treatment of this malignancy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lheureux S, Gourley C, Vergote I, et al. Epithelial ovarian cancer [J]. Lancet. 2019;393(10177):1240–53.PubMedCrossRef Lheureux S, Gourley C, Vergote I, et al. Epithelial ovarian cancer [J]. Lancet. 2019;393(10177):1240–53.PubMedCrossRef
2.
go back to reference Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: evolution of management in the era of precision medicine [J]. CA Cancer J Clin. 2019;69(4):280–304.PubMed Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: evolution of management in the era of precision medicine [J]. CA Cancer J Clin. 2019;69(4):280–304.PubMed
3.
go back to reference Krzystyniak J, Ceppi L, Dizon DS, et al. Epithelial ovarian cancer: The molecular genetics of epithelial ovarian cancer. Ann Oncol, 2016,27 Suppl 1 i4-i10. Krzystyniak J, Ceppi L, Dizon DS, et al. Epithelial ovarian cancer: The molecular genetics of epithelial ovarian cancer. Ann Oncol, 2016,27 Suppl 1 i4-i10.
4.
go back to reference Schwartz L, Supuran CT, Alfarouk KO. The Warburg effect and the hallmarks of cancer [J]. Anti Cancer Agents Med Chem. 2017;17(2):164–70.CrossRef Schwartz L, Supuran CT, Alfarouk KO. The Warburg effect and the hallmarks of cancer [J]. Anti Cancer Agents Med Chem. 2017;17(2):164–70.CrossRef
5.
go back to reference Kato Y, Maeda T, Suzuki A, et al. Cancer metabolism: new insights into classic characteristics [J]. The Japanese dental science review. 2018;54(1):8–21.PubMedCrossRef Kato Y, Maeda T, Suzuki A, et al. Cancer metabolism: new insights into classic characteristics [J]. The Japanese dental science review. 2018;54(1):8–21.PubMedCrossRef
7.
go back to reference Corbet C, Feron O. Tumour acidosis: from the passenger to the driver's seat [J]. Nat Rev Cancer. 2017;17(10):577–93.PubMedCrossRef Corbet C, Feron O. Tumour acidosis: from the passenger to the driver's seat [J]. Nat Rev Cancer. 2017;17(10):577–93.PubMedCrossRef
8.
go back to reference Porporato PE, Filigheddu N, Pedro JMB, et al. Mitochondrial metabolism and cancer [J]. Cell Res. 2018;28(3):265–80.PubMedCrossRef Porporato PE, Filigheddu N, Pedro JMB, et al. Mitochondrial metabolism and cancer [J]. Cell Res. 2018;28(3):265–80.PubMedCrossRef
9.
go back to reference Herst PM, Grasso C, Berridge MV. Metabolic reprogramming of mitochondrial respiration in metastatic cancer [J]. Cancer Metastasis Rev. 2018;37(4):643–53.PubMedCrossRef Herst PM, Grasso C, Berridge MV. Metabolic reprogramming of mitochondrial respiration in metastatic cancer [J]. Cancer Metastasis Rev. 2018;37(4):643–53.PubMedCrossRef
10.
go back to reference Lu J, Tan M, Cai Q. The warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 2015;356(2 Pt A):156–64.PubMedCrossRef Lu J, Tan M, Cai Q. The warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 2015;356(2 Pt A):156–64.PubMedCrossRef
11.
go back to reference Corbet C, Feron O. Cancer cell metabolism and mitochondria: nutrient plasticity for tca cycle fueling [J]. Biochim Biophys Acta Rev Cancer. 2017;1868(1):7–15.PubMedCrossRef Corbet C, Feron O. Cancer cell metabolism and mitochondria: nutrient plasticity for tca cycle fueling [J]. Biochim Biophys Acta Rev Cancer. 2017;1868(1):7–15.PubMedCrossRef
12.
go back to reference Westermann B. Mitochondrial fusion and fission in cell life and death [J]. Nat Rev Mol Cell Biol. 2010;11(12):872–84.PubMedCrossRef Westermann B. Mitochondrial fusion and fission in cell life and death [J]. Nat Rev Mol Cell Biol. 2010;11(12):872–84.PubMedCrossRef
13.
14.
16.
go back to reference Huang Q, Zhan L, Cao H, et al. Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ros-modulated coordinated regulation of the nfkb and tp53 pathways [J]. Autophagy. 2016;12(6):999–1014.PubMedPubMedCentralCrossRef Huang Q, Zhan L, Cao H, et al. Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ros-modulated coordinated regulation of the nfkb and tp53 pathways [J]. Autophagy. 2016;12(6):999–1014.PubMedPubMedCentralCrossRef
17.
go back to reference Li J, Huang Q, Long X, et al. Mitochondrial elongation-mediated glucose metabolism reprogramming is essential for tumour cell survival during energy stress [J]. Oncogene. 2017;36(34):4901–12.PubMedCrossRef Li J, Huang Q, Long X, et al. Mitochondrial elongation-mediated glucose metabolism reprogramming is essential for tumour cell survival during energy stress [J]. Oncogene. 2017;36(34):4901–12.PubMedCrossRef
18.
go back to reference Chen L, Zhang J, Lyu Z, et al. Positive feedback loop between mitochondrial fission and notch signaling promotes survivin-mediated survival of tnbc cells [J]. Cell Death Dis. 2018;9(11):1050.PubMedPubMedCentralCrossRef Chen L, Zhang J, Lyu Z, et al. Positive feedback loop between mitochondrial fission and notch signaling promotes survivin-mediated survival of tnbc cells [J]. Cell Death Dis. 2018;9(11):1050.PubMedPubMedCentralCrossRef
19.
go back to reference Zhao J, Zhang J, Yu M, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells [J]. Oncogene. 2013;32(40):4814–24.PubMedCrossRef Zhao J, Zhang J, Yu M, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells [J]. Oncogene. 2013;32(40):4814–24.PubMedCrossRef
20.
go back to reference Qi M, Dai D, Liu J, et al. Aim2 promotes the development of non-small cell lung cancer by modulating mitochondrial dynamics [J]. Oncogene. 2020;39(13):2707–23.PubMedCrossRef Qi M, Dai D, Liu J, et al. Aim2 promotes the development of non-small cell lung cancer by modulating mitochondrial dynamics [J]. Oncogene. 2020;39(13):2707–23.PubMedCrossRef
21.
go back to reference Rehman J, Zhang HJ, Toth PT, et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer [J]. FASEB J. 2012;26(5):2175–86.PubMedPubMedCentralCrossRef Rehman J, Zhang HJ, Toth PT, et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer [J]. FASEB J. 2012;26(5):2175–86.PubMedPubMedCentralCrossRef
22.
go back to reference Tailor D, Hahm ER, Kale RK, et al. Sodium butyrate induces drp1-mediated mitochondrial fusion and apoptosis in human colorectal cancer cells. Mitochondrion. 2014;16:55–64.PubMedCrossRef Tailor D, Hahm ER, Kale RK, et al. Sodium butyrate induces drp1-mediated mitochondrial fusion and apoptosis in human colorectal cancer cells. Mitochondrion. 2014;16:55–64.PubMedCrossRef
23.
go back to reference Reiter RJ, Sharma R, Ma Q, et al. Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: A mechanistic hypothesis [J]. Cellular and molecular life sciences : CMLS. 2020;77(13):2527–42.PubMedCrossRef Reiter RJ, Sharma R, Ma Q, et al. Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: A mechanistic hypothesis [J]. Cellular and molecular life sciences : CMLS. 2020;77(13):2527–42.PubMedCrossRef
24.
go back to reference Kingnate C, Charoenkwan K, Kumfu S, et al. Possible roles of mitochondrial dynamics and the effects of pharmacological interventions in chemoresistant ovarian cancer. EBioMedicine. 2018;34:256–66.PubMedPubMedCentralCrossRef Kingnate C, Charoenkwan K, Kumfu S, et al. Possible roles of mitochondrial dynamics and the effects of pharmacological interventions in chemoresistant ovarian cancer. EBioMedicine. 2018;34:256–66.PubMedPubMedCentralCrossRef
25.
go back to reference Liu T, Yu R, Jin SB, et al. The mitochondrial elongation factors mief1 and mief2 exert partially distinct functions in mitochondrial dynamics [J]. Exp Cell Res. 2013;319(18):2893–904.PubMedCrossRef Liu T, Yu R, Jin SB, et al. The mitochondrial elongation factors mief1 and mief2 exert partially distinct functions in mitochondrial dynamics [J]. Exp Cell Res. 2013;319(18):2893–904.PubMedCrossRef
26.
go back to reference Nagy A, Lanczky A, Menyhart O, et al. Validation of mirna prognostic power in hepatocellular carcinoma using expression data of independent datasets [J]. Sci Rep. 2018;8(1):9227.PubMedPubMedCentralCrossRef Nagy A, Lanczky A, Menyhart O, et al. Validation of mirna prognostic power in hepatocellular carcinoma using expression data of independent datasets [J]. Sci Rep. 2018;8(1):9227.PubMedPubMedCentralCrossRef
27.
go back to reference Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer [J]. Nat Rev Mol Cell Biol. 2019;20(2):69–84.PubMedCrossRef Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer [J]. Nat Rev Mol Cell Biol. 2019;20(2):69–84.PubMedCrossRef
28.
go back to reference Shirdel EA, Xie W, Mak TW, et al. Navigating the micronome--using multiple microrna prediction databases to identify signalling pathway-associated micrornas [J]. PLoS One. 2011;6(2):e17429.PubMedPubMedCentralCrossRef Shirdel EA, Xie W, Mak TW, et al. Navigating the micronome--using multiple microrna prediction databases to identify signalling pathway-associated micrornas [J]. PLoS One. 2011;6(2):e17429.PubMedPubMedCentralCrossRef
29.
go back to reference Buck MD, O'Sullivan D, Klein Geltink RI, et al. Mitochondrial dynamics controls t cell fate through metabolic programming [J]. Cell. 2016;166(1):63–76.PubMedPubMedCentralCrossRef Buck MD, O'Sullivan D, Klein Geltink RI, et al. Mitochondrial dynamics controls t cell fate through metabolic programming [J]. Cell. 2016;166(1):63–76.PubMedPubMedCentralCrossRef
30.
go back to reference Lunt SY, Vander Heiden MG. Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annual review of cell and developmental biology. 2011;27:441–64.PubMedCrossRef Lunt SY, Vander Heiden MG. Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annual review of cell and developmental biology. 2011;27:441–64.PubMedCrossRef
31.
go back to reference Giacomello M, Pyakurel A, Glytsou C, et al. The cell biology of mitochondrial membrane dynamics [J]. Nat Rev Mol Cell Biol. 2020;21(4):204–24.PubMedCrossRef Giacomello M, Pyakurel A, Glytsou C, et al. The cell biology of mitochondrial membrane dynamics [J]. Nat Rev Mol Cell Biol. 2020;21(4):204–24.PubMedCrossRef
32.
go back to reference Kim HK, Noh YH, Nilius B, et al. Current and upcoming mitochondrial targets for cancer therapy. Semin Cancer Biol. 2017;47:154–67.PubMedCrossRef Kim HK, Noh YH, Nilius B, et al. Current and upcoming mitochondrial targets for cancer therapy. Semin Cancer Biol. 2017;47:154–67.PubMedCrossRef
33.
go back to reference de Almeida Chuffa LG, Seiva FRF, Cucielo MS, et al. Mitochondrial functions and melatonin: A tour of the reproductive cancers [J]. Cellular and molecular life sciences : CMLS. 2019;76(5):837–63.PubMedCrossRef de Almeida Chuffa LG, Seiva FRF, Cucielo MS, et al. Mitochondrial functions and melatonin: A tour of the reproductive cancers [J]. Cellular and molecular life sciences : CMLS. 2019;76(5):837–63.PubMedCrossRef
34.
go back to reference Yu L, Xiao Z, Tu H, et al. The expression and prognostic significance of drp1 in lung cancer: A bioinformatics analysis and immunohistochemistry [J]. Medicine (Baltimore). 2019;98(48):e18228.CrossRef Yu L, Xiao Z, Tu H, et al. The expression and prognostic significance of drp1 in lung cancer: A bioinformatics analysis and immunohistochemistry [J]. Medicine (Baltimore). 2019;98(48):e18228.CrossRef
35.
go back to reference Kim YY, Yun SH, Yun J. Downregulation of drp1, a fission regulator, is associated with human lung and colon cancers [J]. Acta Biochim Biophys Sin Shanghai. 2018;50(2):209–15.PubMedCrossRef Kim YY, Yun SH, Yun J. Downregulation of drp1, a fission regulator, is associated with human lung and colon cancers [J]. Acta Biochim Biophys Sin Shanghai. 2018;50(2):209–15.PubMedCrossRef
36.
go back to reference Hu J, Meng Y, Zhang Z, et al. March5 rna promotes autophagy, migration, and invasion of ovarian cancer cells [J]. Autophagy. 2017;13(2):333–44.PubMedCrossRef Hu J, Meng Y, Zhang Z, et al. March5 rna promotes autophagy, migration, and invasion of ovarian cancer cells [J]. Autophagy. 2017;13(2):333–44.PubMedCrossRef
37.
go back to reference Tang Q, Liu W, Zhang Q, et al. Dynamin-related protein 1-mediated mitochondrial fission contributes to ir-783-induced apoptosis in human breast cancer cells [J]. J Cell Mol Med. 2018;22(9):4474–85.PubMedPubMedCentralCrossRef Tang Q, Liu W, Zhang Q, et al. Dynamin-related protein 1-mediated mitochondrial fission contributes to ir-783-induced apoptosis in human breast cancer cells [J]. J Cell Mol Med. 2018;22(9):4474–85.PubMedPubMedCentralCrossRef
38.
go back to reference Zhang Y, Li H, Chang H, et al. Mtp18 overexpression contributes to tumor growth and metastasis and associates with poor survival in hepatocellular carcinoma [J]. Cell Death Dis. 2018;9(10):956.PubMedPubMedCentralCrossRef Zhang Y, Li H, Chang H, et al. Mtp18 overexpression contributes to tumor growth and metastasis and associates with poor survival in hepatocellular carcinoma [J]. Cell Death Dis. 2018;9(10):956.PubMedPubMedCentralCrossRef
39.
go back to reference Zhang Z, Li TE, Chen M, et al. Mfn1-dependent alteration of mitochondrial dynamics drives hepatocellular carcinoma metastasis by glucose metabolic reprogramming [J]. Br J Cancer. 2020;122(2):209–20.PubMedCrossRef Zhang Z, Li TE, Chen M, et al. Mfn1-dependent alteration of mitochondrial dynamics drives hepatocellular carcinoma metastasis by glucose metabolic reprogramming [J]. Br J Cancer. 2020;122(2):209–20.PubMedCrossRef
40.
go back to reference Wang J, Wang S, Zhou J, et al. Mir-424-5p regulates cell proliferation, migration and invasion by targeting doublecortin-like kinase 1 in basal-like breast cancer. Biomed Pharmacother. 2018;102:147–52.PubMedCrossRef Wang J, Wang S, Zhou J, et al. Mir-424-5p regulates cell proliferation, migration and invasion by targeting doublecortin-like kinase 1 in basal-like breast cancer. Biomed Pharmacother. 2018;102:147–52.PubMedCrossRef
41.
go back to reference Du H, Xu Q, Xiao S, et al. Microrna-424-5p acts as a potential biomarker and inhibits proliferation and invasion in hepatocellular carcinoma by targeting trim29. Life Sci. 2019;224:1–11.PubMedCrossRef Du H, Xu Q, Xiao S, et al. Microrna-424-5p acts as a potential biomarker and inhibits proliferation and invasion in hepatocellular carcinoma by targeting trim29. Life Sci. 2019;224:1–11.PubMedCrossRef
42.
go back to reference Matsushita R, Seki N, Chiyomaru T, et al. Tumour-suppressive microrna-144-5p directly targets ccne1/2 as potential prognostic markers in bladder cancer [J]. Br J Cancer. 2015;113(2):282–9.PubMedPubMedCentralCrossRef Matsushita R, Seki N, Chiyomaru T, et al. Tumour-suppressive microrna-144-5p directly targets ccne1/2 as potential prognostic markers in bladder cancer [J]. Br J Cancer. 2015;113(2):282–9.PubMedPubMedCentralCrossRef
43.
go back to reference Zhou Y, An Q, Guo RX, et al. Mir424-5p functions as an anti-oncogene in cervical cancer cell growth by targeting kdm5b via the notch signaling pathway. Life Sci. 2017;171:9–15.PubMedCrossRef Zhou Y, An Q, Guo RX, et al. Mir424-5p functions as an anti-oncogene in cervical cancer cell growth by targeting kdm5b via the notch signaling pathway. Life Sci. 2017;171:9–15.PubMedCrossRef
44.
go back to reference Liu J, Gu Z, Tang Y, et al. Tumour-suppressive microrna-424-5p directly targets ccne1 as potential prognostic markers in epithelial ovarian cancer [J]. Cell Cycle. 2018;17(3):309–18.PubMedPubMedCentralCrossRef Liu J, Gu Z, Tang Y, et al. Tumour-suppressive microrna-424-5p directly targets ccne1 as potential prognostic markers in epithelial ovarian cancer [J]. Cell Cycle. 2018;17(3):309–18.PubMedPubMedCentralCrossRef
45.
go back to reference Mikawa T, ME LL, Takaori-Kondo A, et al. Dysregulated glycolysis as an oncogenic event [J]. Cell Mol Life Sci. 2015;72(10):1881–92.PubMedCrossRef Mikawa T, ME LL, Takaori-Kondo A, et al. Dysregulated glycolysis as an oncogenic event [J]. Cell Mol Life Sci. 2015;72(10):1881–92.PubMedCrossRef
46.
go back to reference Jose C, Bellance N, Rossignol R. Choosing between glycolysis and oxidative phosphorylation: A tumor's dilemma? [J]. Biochim Biophys Acta. 2011;1807(6):552–61.PubMedCrossRef Jose C, Bellance N, Rossignol R. Choosing between glycolysis and oxidative phosphorylation: A tumor's dilemma? [J]. Biochim Biophys Acta. 2011;1807(6):552–61.PubMedCrossRef
Metadata
Title
MIEF2 over-expression promotes tumor growth and metastasis through reprogramming of glucose metabolism in ovarian cancer
Authors
Shuhua Zhao
Xiaohong Zhang
Yuan Shi
Lu Cheng
Tingting Song
Bing Wu
Jia Li
Hong Yang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2020
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-020-01802-9

Other articles of this Issue 1/2020

Journal of Experimental & Clinical Cancer Research 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine