Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2020

01-12-2020 | Metastasis | Research

The molecular and gene/miRNA expression profiles of radioiodine resistant papillary thyroid cancer

Authors: Carla Colombo, Emanuela Minna, Chiara Gargiuli, Marina Muzza, Matteo Dugo, Loris De Cecco, Gabriele Pogliaghi, Delfina Tosi, Gaetano Bulfamante, Angela Greco, Laura Fugazzola, Maria Grazia Borrello

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2020

Login to get access

Abstract

Background

Papillary thyroid cancer (PTC) is the most frequent endocrine tumor. Radioiodine (RAI) treatment is highly effective in these tumors, but up to 60% of metastatic cases become RAI-refractory. Scanty data are available on either the molecular pattern of radioiodine refractory papillary thyroid cancers (PTC) or the mechanisms responsible for RAI resistance.

Methods

We analyzed the molecular profile and gene/miRNA expression in primary PTCs, synchronous and RAI-refractory lymph node metastases (LNMs) in correlation to RAI avidity or refractoriness.
We classified patients as RAI+/D+ (RAI uptake/disease persistence), RAI−/D+ (absent RAI uptake/disease persistence), and RAI+/D- (RAI uptake/disease remission), and analyzed the molecular and gene/miRNA profiles, and the expression of thyroid differentiation (TD) related genes.

Results

A different molecular profile according to the RAI class was observed: BRAFV600E cases were more frequent in RAI−/D+ (P = 0.032), and fusion genes in RAI+/D+ cases. RAI+/D- patients were less frequently pTERT mutations positive, and more frequently wild type for the tested mutations/fusions. Expression profiles clearly distinguished PTC from normal thyroid. On the other hand, in refractory cases (RAI+/D+ and RAI−/D+) no distinctive PTC expression patterns were associated with either tissue type, or RAI uptake, but with the driving lesion and BRAF−/RAS-like subtype. Primary tumors and RAI-refractory LNMs with BRAFV600E mutation display transcriptome similarity suggesting that RAI minimally affects the expression profiles of RAI-refractory metastases. Molecular profiles associated with the expression of TPO, SLC26A4 and TD genes, that were found more downregulated in BRAFV600E than in gene fusions tumors.

Conclusions

The present data indicate a different molecular profile in RAI-avid and RAI-refractory metastatic PTCs. Moreover, BRAFV600E tumors displayed reduced differentiation and intrinsic RAI refractoriness, while PTCs with fusion oncogenes are RAI-avid but persistent, suggesting different oncogene-driven mechanisms leading to RAI refractoriness.
Appendix
Available only for authorised users
Literature
1.
go back to reference Verburg FA, Hanscheid H, Luster M. Radioactive iodine (RAI) therapy for metastatic differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2017;31:279–90.PubMedCrossRef Verburg FA, Hanscheid H, Luster M. Radioactive iodine (RAI) therapy for metastatic differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2017;31:279–90.PubMedCrossRef
2.
go back to reference Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91:2892–9.PubMedCrossRef Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91:2892–9.PubMedCrossRef
3.
go back to reference Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid Cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid Cancer. Thyroid. 2016;26:1–133.PubMedPubMedCentralCrossRef Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid Cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid Cancer. Thyroid. 2016;26:1–133.PubMedPubMedCentralCrossRef
4.
go back to reference Durante C, Puxeddu E, Ferretti E, Morisi R, Moretti S, Bruno R, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab. 2007;92:2840–3.PubMedCrossRef Durante C, Puxeddu E, Ferretti E, Morisi R, Moretti S, Bruno R, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab. 2007;92:2840–3.PubMedCrossRef
5.
go back to reference Mian C, Barollo S, Pennelli G, Pavan N, Rugge M, Pelizzo MR, et al. Molecular characteristics in papillary thyroid cancers (PTCs) with no 131I uptake. Clin Endocrinol. 2008;68:108–16.CrossRef Mian C, Barollo S, Pennelli G, Pavan N, Rugge M, Pelizzo MR, et al. Molecular characteristics in papillary thyroid cancers (PTCs) with no 131I uptake. Clin Endocrinol. 2008;68:108–16.CrossRef
6.
go back to reference Bastos AU, Oler G, Nozima BH, Moyses RA, Cerutti JM. BRAF V600E and decreased NIS and TPO expression are associated with aggressiveness of a subgroup of papillary thyroid microcarcinoma. Eur J Endocrinol. 2015;173:525–40.PubMedCrossRef Bastos AU, Oler G, Nozima BH, Moyses RA, Cerutti JM. BRAF V600E and decreased NIS and TPO expression are associated with aggressiveness of a subgroup of papillary thyroid microcarcinoma. Eur J Endocrinol. 2015;173:525–40.PubMedCrossRef
7.
go back to reference Romei C, Ciampi R, Faviana P, Agate L, Molinaro E, Bottici V, et al. BRAFV600E mutation, but not RET/PTC rearrangements, is correlated with a lower expression of both thyroperoxidase and sodium iodide symporter genes in papillary thyroid cancer. Endocr Relat Cancer. 2008;15:511–20.PubMedCrossRef Romei C, Ciampi R, Faviana P, Agate L, Molinaro E, Bottici V, et al. BRAFV600E mutation, but not RET/PTC rearrangements, is correlated with a lower expression of both thyroperoxidase and sodium iodide symporter genes in papillary thyroid cancer. Endocr Relat Cancer. 2008;15:511–20.PubMedCrossRef
9.
go back to reference Ricarte-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69:4885–93.PubMedPubMedCentralCrossRef Ricarte-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69:4885–93.PubMedPubMedCentralCrossRef
10.
go back to reference Sabra MM, Dominguez JM, Grewal RK, Larson SM, Ghossein RA, Tuttle RM, et al. Clinical outcomes and molecular profile of differentiated thyroid cancers with radioiodine-avid distant metastases. J Clin Endocrinol Metab. 2013;98:E829–36.PubMedPubMedCentralCrossRef Sabra MM, Dominguez JM, Grewal RK, Larson SM, Ghossein RA, Tuttle RM, et al. Clinical outcomes and molecular profile of differentiated thyroid cancers with radioiodine-avid distant metastases. J Clin Endocrinol Metab. 2013;98:E829–36.PubMedPubMedCentralCrossRef
11.
go back to reference Brose MS, Cabanillas ME, Cohen EE, Wirth LJ, Riehl T, Yue H, et al. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17:1272–82.PubMedPubMedCentralCrossRef Brose MS, Cabanillas ME, Cohen EE, Wirth LJ, Riehl T, Yue H, et al. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17:1272–82.PubMedPubMedCentralCrossRef
12.
go back to reference Dunn LA, Sherman EJ, Baxi SS, Tchekmedyian V, Grewal RK, Larson SM, et al. Vemurafenib Redifferentiation of BRAF mutant, RAI-refractory thyroid cancers. J Clin Endocrinol Metab. 2019;104:1417–28.PubMedCrossRef Dunn LA, Sherman EJ, Baxi SS, Tchekmedyian V, Grewal RK, Larson SM, et al. Vemurafenib Redifferentiation of BRAF mutant, RAI-refractory thyroid cancers. J Clin Endocrinol Metab. 2019;104:1417–28.PubMedCrossRef
13.
go back to reference Dadu R, Shah K, Busaidy NL, Waguespack SG, Habra MA, Ying AK, et al. Efficacy and tolerability of vemurafenib in patients with BRAF(V600E) -positive papillary thyroid cancer: M.D. Anderson Cancer center off label experience. J Clin Endocrinol Metab. 2015;100:E77–81.PubMedCrossRef Dadu R, Shah K, Busaidy NL, Waguespack SG, Habra MA, Ying AK, et al. Efficacy and tolerability of vemurafenib in patients with BRAF(V600E) -positive papillary thyroid cancer: M.D. Anderson Cancer center off label experience. J Clin Endocrinol Metab. 2015;100:E77–81.PubMedCrossRef
14.
go back to reference Aashiq M, Silverman DA, Na'ara S, Takahashi H, Amit M. Radioiodine-refractory thyroid Cancer: molecular basis of Redifferentiation therapies, management, and novel therapies. Cancers (Basel). 2019;11:1382. Aashiq M, Silverman DA, Na'ara S, Takahashi H, Amit M. Radioiodine-refractory thyroid Cancer: molecular basis of Redifferentiation therapies, management, and novel therapies. Cancers (Basel). 2019;11:1382.
15.
go back to reference Rothenberg SM, McFadden DG, Palmer EL, Daniels GH, Wirth LJ. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res. 2015;21:1028–35.PubMedCrossRef Rothenberg SM, McFadden DG, Palmer EL, Daniels GH, Wirth LJ. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res. 2015;21:1028–35.PubMedCrossRef
16.
go back to reference Falchook GS, Millward M, Hong D, Naing A, Piha-Paul S, Waguespack SG, et al. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid. 2015;25:71–7.PubMedPubMedCentralCrossRef Falchook GS, Millward M, Hong D, Naing A, Piha-Paul S, Waguespack SG, et al. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid. 2015;25:71–7.PubMedPubMedCentralCrossRef
17.
go back to reference Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368:623–32.PubMedPubMedCentralCrossRef Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368:623–32.PubMedPubMedCentralCrossRef
18.
go back to reference Iravani A, Solomon B, Pattison DA, Jackson P, Ravi KA, Kong G, et al. Mitogen-activated protein kinase pathway inhibition for Redifferentiation of radioiodine refractory differentiated thyroid Cancer: an evolving protocol. Thyroid. 2019;29:1634–45.PubMedCrossRef Iravani A, Solomon B, Pattison DA, Jackson P, Ravi KA, Kong G, et al. Mitogen-activated protein kinase pathway inhibition for Redifferentiation of radioiodine refractory differentiated thyroid Cancer: an evolving protocol. Thyroid. 2019;29:1634–45.PubMedCrossRef
19.
go back to reference Leboulleux S, Dupuy C, Lacroix L, Attard M, Grimaldi S, Corre R, et al. Redifferentiation of a BRAF(K601E)-mutated poorly differentiated thyroid Cancer patient with Dabrafenib and Trametinib treatment. Thyroid. 2019;29:735–42.PubMedCrossRef Leboulleux S, Dupuy C, Lacroix L, Attard M, Grimaldi S, Corre R, et al. Redifferentiation of a BRAF(K601E)-mutated poorly differentiated thyroid Cancer patient with Dabrafenib and Trametinib treatment. Thyroid. 2019;29:735–42.PubMedCrossRef
21.
go back to reference Fuziwara CS, Kimura ET. MicroRNAs in thyroid development, function and tumorigenesis. Mol Cell Endocrinol. 2017;456:44–50.PubMedCrossRef Fuziwara CS, Kimura ET. MicroRNAs in thyroid development, function and tumorigenesis. Mol Cell Endocrinol. 2017;456:44–50.PubMedCrossRef
22.
go back to reference Wojcicka A, Kolanowska M, Jazdzewski K. Mechanisms in endocrinology: MicroRNA in diagnostics and therapy of thyroid cancer. Eur J Endocrinol. 2015;174:R89–98.PubMedCrossRef Wojcicka A, Kolanowska M, Jazdzewski K. Mechanisms in endocrinology: MicroRNA in diagnostics and therapy of thyroid cancer. Eur J Endocrinol. 2015;174:R89–98.PubMedCrossRef
23.
go back to reference Minna E, Romeo P, De CL, Dugo M, Cassinelli G, Pilotti S, et al. miR-199a-3p displays tumor suppressor functions in papillary thyroid carcinoma. Oncotarget. 2014;5:2513–28.PubMedPubMedCentralCrossRef Minna E, Romeo P, De CL, Dugo M, Cassinelli G, Pilotti S, et al. miR-199a-3p displays tumor suppressor functions in papillary thyroid carcinoma. Oncotarget. 2014;5:2513–28.PubMedPubMedCentralCrossRef
24.
go back to reference Minna E, Romeo P, Dugo M, De CL, Todoerti K, Pilotti S, et al. miR-451a is underexpressed and targets AKT/mTOR pathway in papillary thyroid carcinoma. Oncotarget. 2016;7:12731–47.PubMedPubMedCentralCrossRef Minna E, Romeo P, Dugo M, De CL, Todoerti K, Pilotti S, et al. miR-451a is underexpressed and targets AKT/mTOR pathway in papillary thyroid carcinoma. Oncotarget. 2016;7:12731–47.PubMedPubMedCentralCrossRef
25.
go back to reference Fugazzola L, Elisei R, Fuhrer D, Jarzab B, Leboulleux S, Newbold K, et al. 2019 European thyroid association guidelines for the treatment and follow-up of advanced radioiodine-refractory thyroid Cancer. Eur Thyroid J. 2019;8:227–45.PubMedPubMedCentralCrossRef Fugazzola L, Elisei R, Fuhrer D, Jarzab B, Leboulleux S, Newbold K, et al. 2019 European thyroid association guidelines for the treatment and follow-up of advanced radioiodine-refractory thyroid Cancer. Eur Thyroid J. 2019;8:227–45.PubMedPubMedCentralCrossRef
26.
go back to reference Pacini F, Basolo F, Bellantone R, Boni G, Cannizzaro MA, De PM, et al. Italian consensus on diagnosis and treatment of differentiated thyroid cancer: joint statements of six Italian societies. J Endocrinol Investig. 2018;41:849–76.CrossRef Pacini F, Basolo F, Bellantone R, Boni G, Cannizzaro MA, De PM, et al. Italian consensus on diagnosis and treatment of differentiated thyroid cancer: joint statements of six Italian societies. J Endocrinol Investig. 2018;41:849–76.CrossRef
27.
go back to reference Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A. American Joint Committee on Cancer (AJCC) cancer staging manual. 7th ed. Chicago: Springer, Inc; 2010. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A. American Joint Committee on Cancer (AJCC) cancer staging manual. 7th ed. Chicago: Springer, Inc; 2010.
28.
go back to reference Pesenti C, Muzza M, Colombo C, Proverbio MC, Fare C, Ferrero S, et al. MassARRAY-based simultaneous detection of hotspot somatic mutations and recurrent fusion genes in papillary thyroid carcinoma: the PTC-MA assay. Endocrine. 2018;61:36–41.PubMedCrossRef Pesenti C, Muzza M, Colombo C, Proverbio MC, Fare C, Ferrero S, et al. MassARRAY-based simultaneous detection of hotspot somatic mutations and recurrent fusion genes in papillary thyroid carcinoma: the PTC-MA assay. Endocrine. 2018;61:36–41.PubMedCrossRef
29.
go back to reference Colombo C, Muzza M, Proverbio MC, Tosi D, Soranna D, Pesenti C, et al. Impact of mutation density and heterogeneity on papillary thyroid Cancer clinical features and remission probability. Thyroid. 2019;29:237–51.PubMedCrossRef Colombo C, Muzza M, Proverbio MC, Tosi D, Soranna D, Pesenti C, et al. Impact of mutation density and heterogeneity on papillary thyroid Cancer clinical features and remission probability. Thyroid. 2019;29:237–51.PubMedCrossRef
30.
go back to reference The Cancer Gene Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90.CrossRef The Cancer Gene Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90.CrossRef
31.
go back to reference Minna E, Brich S, Todoerti K, Pilotti S, Collini P, Bonaldi E, et al. Cancer associated fibroblasts and senescent thyroid cells in the invasive front of thyroid carcinoma. Cancers (Basel). 2020;12:112.CrossRef Minna E, Brich S, Todoerti K, Pilotti S, Collini P, Bonaldi E, et al. Cancer associated fibroblasts and senescent thyroid cells in the invasive front of thyroid carcinoma. Cancers (Basel). 2020;12:112.CrossRef
32.
33.
go back to reference Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.PubMedCrossRef Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.PubMedCrossRef
34.
go back to reference Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK. ROBUST Hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann Appl Stat. 2016;10:946–63.PubMedPubMedCentralCrossRef Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK. ROBUST Hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann Appl Stat. 2016;10:946–63.PubMedPubMedCentralCrossRef
35.
go back to reference Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.PubMedPubMedCentralCrossRef Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.PubMedPubMedCentralCrossRef
36.
go back to reference Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D, et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene. 2005;24:6646–56.PubMedCrossRef Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D, et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene. 2005;24:6646–56.PubMedCrossRef
37.
go back to reference He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2005;102:19075–80.PubMedPubMedCentralCrossRef He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2005;102:19075–80.PubMedPubMedCentralCrossRef
38.
go back to reference Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, et al. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci U S A. 2007;104:2803–8.PubMedPubMedCentralCrossRef Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, et al. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci U S A. 2007;104:2803–8.PubMedPubMedCentralCrossRef
39.
go back to reference Dom G, Tarabichi M, Unger K, Thomas G, Oczko-Wojciechowska M, Bogdanova T, et al. A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas. Br J Cancer. 2012;107:994–1000.PubMedPubMedCentralCrossRef Dom G, Tarabichi M, Unger K, Thomas G, Oczko-Wojciechowska M, Bogdanova T, et al. A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas. Br J Cancer. 2012;107:994–1000.PubMedPubMedCentralCrossRef
40.
go back to reference Tomas G, Tarabichi M, Gacquer D, Hebrant A, Dom G, Dumont JE, et al. A general method to derive robust organ-specific gene expression-based differentiation indices: application to thyroid cancer diagnostic. Oncogene. 2012;31:4490–8.PubMedCrossRef Tomas G, Tarabichi M, Gacquer D, Hebrant A, Dom G, Dumont JE, et al. A general method to derive robust organ-specific gene expression-based differentiation indices: application to thyroid cancer diagnostic. Oncogene. 2012;31:4490–8.PubMedCrossRef
41.
go back to reference Handkiewicz-Junak D, Swierniak M, Rusinek D, Oczko-Wojciechowska M, Dom G, Maenhaut C, et al. Gene signature of the post-Chernobyl papillary thyroid cancer. Eur J Nucl Med Mol Imaging. 2016;43:1267–77.PubMedPubMedCentralCrossRef Handkiewicz-Junak D, Swierniak M, Rusinek D, Oczko-Wojciechowska M, Dom G, Maenhaut C, et al. Gene signature of the post-Chernobyl papillary thyroid cancer. Eur J Nucl Med Mol Imaging. 2016;43:1267–77.PubMedPubMedCentralCrossRef
42.
go back to reference Pita JM, Banito A, Cavaco BM, Leite V. Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas. Br J Cancer. 2009;101:1782–91.PubMedPubMedCentralCrossRef Pita JM, Banito A, Cavaco BM, Leite V. Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas. Br J Cancer. 2009;101:1782–91.PubMedPubMedCentralCrossRef
43.
go back to reference Tarabichi M, Saiselet M, Tresallet C, Hoang C, Larsimont D, Andry G, et al. Revisiting the transcriptional analysis of primary tumours and associated nodal metastases with enhanced biological and statistical controls: application to thyroid cancer. Br J Cancer. 2015;112:1665–74.PubMedPubMedCentralCrossRef Tarabichi M, Saiselet M, Tresallet C, Hoang C, Larsimont D, Andry G, et al. Revisiting the transcriptional analysis of primary tumours and associated nodal metastases with enhanced biological and statistical controls: application to thyroid cancer. Br J Cancer. 2015;112:1665–74.PubMedPubMedCentralCrossRef
44.
go back to reference Groussin L, Clerc J, Huillard O. Larotrectinib-enhanced radioactive iodine uptake in advanced thyroid Cancer. N Engl J Med. 2020;383:1686–7.PubMedCrossRef Groussin L, Clerc J, Huillard O. Larotrectinib-enhanced radioactive iodine uptake in advanced thyroid Cancer. N Engl J Med. 2020;383:1686–7.PubMedCrossRef
45.
go back to reference Yang X, Li J, Li X, Liang Z, Gao W, Liang J, et al. TERT promoter mutation predicts radioiodine-refractory character in distant metastatic differentiated thyroid Cancer. J Nucl Med. 2017;58:258–65.PubMedCrossRef Yang X, Li J, Li X, Liang Z, Gao W, Liang J, et al. TERT promoter mutation predicts radioiodine-refractory character in distant metastatic differentiated thyroid Cancer. J Nucl Med. 2017;58:258–65.PubMedCrossRef
46.
go back to reference Melo M, Gaspar da RA, Batista R, Vinagre J, Martins MJ, Costa G, et al. TERT, BRAF, and NRAS in Primary Thyroid Cancer and Metastatic Disease. J Clin Endocrinol Metab. 2017;102:1898–907. Melo M, Gaspar da RA, Batista R, Vinagre J, Martins MJ, Costa G, et al. TERT, BRAF, and NRAS in Primary Thyroid Cancer and Metastatic Disease. J Clin Endocrinol Metab. 2017;102:1898–907.
47.
go back to reference Sohn SY, Park WY, Shin HT, Bae JS, Ki CS, Oh YL, et al. Highly concordant key genetic alterations in primary tumors and matched distant metastases in differentiated thyroid Cancer. Thyroid. 2016;26:672–82.PubMedCrossRef Sohn SY, Park WY, Shin HT, Bae JS, Ki CS, Oh YL, et al. Highly concordant key genetic alterations in primary tumors and matched distant metastases in differentiated thyroid Cancer. Thyroid. 2016;26:672–82.PubMedCrossRef
48.
go back to reference Jeon MJ, Chun SM, Lee JY, Choi KW, Kim D, Kim TY, et al. Mutational profile of papillary thyroid microcarcinoma with extensive lymph node metastasis. Endocrine. 2019;64:130–8.PubMedCrossRef Jeon MJ, Chun SM, Lee JY, Choi KW, Kim D, Kim TY, et al. Mutational profile of papillary thyroid microcarcinoma with extensive lymph node metastasis. Endocrine. 2019;64:130–8.PubMedCrossRef
49.
go back to reference Song E, Song DE, Ahn J, Kim TY, Kim WB, Shong YK, et al. Genetic profile of advanced thyroid cancers in relation to distant metastasis. Endocr Relat Cancer. 2020;27:285–93.PubMedCrossRef Song E, Song DE, Ahn J, Kim TY, Kim WB, Shong YK, et al. Genetic profile of advanced thyroid cancers in relation to distant metastasis. Endocr Relat Cancer. 2020;27:285–93.PubMedCrossRef
50.
go back to reference Fakhruddin N, Jabbour M, Novy M, Tamim H, Bahmad H, Farhat F, et al. BRAF and NRAS mutations in papillary thyroid carcinoma and concordance in BRAF mutations between primary and corresponding lymph node metastases. Sci Rep. 2017;7:4666.PubMedPubMedCentralCrossRef Fakhruddin N, Jabbour M, Novy M, Tamim H, Bahmad H, Farhat F, et al. BRAF and NRAS mutations in papillary thyroid carcinoma and concordance in BRAF mutations between primary and corresponding lymph node metastases. Sci Rep. 2017;7:4666.PubMedPubMedCentralCrossRef
51.
go back to reference Saiselet M, Gacquer D, Spinette A, Craciun L, Caussin-Petrucci M, Andry G, et al. New global analysis of the microRNA transcriptome of primary tumors and lymph node metastases of papillary thyroid cancer. BMC Genomics. 2015;16:828.PubMedPubMedCentralCrossRef Saiselet M, Gacquer D, Spinette A, Craciun L, Caussin-Petrucci M, Andry G, et al. New global analysis of the microRNA transcriptome of primary tumors and lymph node metastases of papillary thyroid cancer. BMC Genomics. 2015;16:828.PubMedPubMedCentralCrossRef
52.
go back to reference Romeo P, Colombo C, Granata R, Calareso G, Gualeni AV, Dugo M, et al. Circulating miR-375 as a novel prognostic marker for metastatic medullary thyroid cancer patients. Endocr Relat Cancer. 2018;25:217–31.PubMedCrossRef Romeo P, Colombo C, Granata R, Calareso G, Gualeni AV, Dugo M, et al. Circulating miR-375 as a novel prognostic marker for metastatic medullary thyroid cancer patients. Endocr Relat Cancer. 2018;25:217–31.PubMedCrossRef
53.
go back to reference Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H, et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 2016;12:e1006239.PubMedPubMedCentralCrossRef Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H, et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 2016;12:e1006239.PubMedPubMedCentralCrossRef
54.
go back to reference Na KJ, Choi H. Immune landscape of papillary thyroid cancer and immunotherapeutic implications. Endocr Relat Cancer. 2018;25:523–31.PubMedCrossRef Na KJ, Choi H. Immune landscape of papillary thyroid cancer and immunotherapeutic implications. Endocr Relat Cancer. 2018;25:523–31.PubMedCrossRef
55.
go back to reference Kim K, Jeon S, Kim TM, Jung CK. Immune gene signature delineates a subclass of papillary thyroid Cancer with unfavorable clinical outcomes. Cancers (Basel). 2018;10:494.CrossRef Kim K, Jeon S, Kim TM, Jung CK. Immune gene signature delineates a subclass of papillary thyroid Cancer with unfavorable clinical outcomes. Cancers (Basel). 2018;10:494.CrossRef
56.
go back to reference Fugazzola L, Cerutti N, Mannavola D, Vannucchi G, Beck-Peccoz P. The role of pendrin in iodide regulation. Exp Clin Endocrinol Diabetes. 2001;109:18–22.PubMedCrossRef Fugazzola L, Cerutti N, Mannavola D, Vannucchi G, Beck-Peccoz P. The role of pendrin in iodide regulation. Exp Clin Endocrinol Diabetes. 2001;109:18–22.PubMedCrossRef
57.
go back to reference Chakravarty D, Santos E, Ryder M, Knauf JA, Liao XH, West BL, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 2011;121:4700–11.PubMedPubMedCentralCrossRef Chakravarty D, Santos E, Ryder M, Knauf JA, Liao XH, West BL, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 2011;121:4700–11.PubMedPubMedCentralCrossRef
Metadata
Title
The molecular and gene/miRNA expression profiles of radioiodine resistant papillary thyroid cancer
Authors
Carla Colombo
Emanuela Minna
Chiara Gargiuli
Marina Muzza
Matteo Dugo
Loris De Cecco
Gabriele Pogliaghi
Delfina Tosi
Gaetano Bulfamante
Angela Greco
Laura Fugazzola
Maria Grazia Borrello
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2020
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-020-01757-x

Other articles of this Issue 1/2020

Journal of Experimental & Clinical Cancer Research 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine