Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2020

Open Access 01-12-2020 | Metastasis | Research

Tubulin Tyrosine Ligase Like 4 (TTLL4) overexpression in breast cancer cells is associated with brain metastasis and alters exosome biogenesis

Authors: Julia Arnold, Juliana Schattschneider, Christine Blechner, Christoph Krisp, Hartmut Schlüter, Michaela Schweizer, Marcus Nalaskowski, Leticia Oliveira-Ferrer, Sabine Windhorst

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2020

Login to get access

Abstract

Background

The survival rate is poor in breast cancer patients with brain metastases. Thus, new concepts for therapeutic approaches are required. During metastasis, the cytoskeleton of cancer cells is highly dynamic and therefore cytoskeleton-associated proteins are interesting targets for tumour therapy.

Methods

Screening for genes showing a significant correlation with brain metastasis formation was performed based on microarray data from breast cancer patients with long-term follow up information. Validation of the most interesting target was performed by MTT-, Scratch- and Transwell-assay. In addition, intracellular trafficking was analyzed by live-cell imaging for secretory vesicles, early endosomes and multiple vesicular bodies (MVB) generating extracellular vesicles (EVs). EVs were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), Western blotting, mass spectrometry, and ingenuity pathway analysis (IPA). Effect of EVs on the blood-brain-barrier (BBB) was examined by incubating endothelial cells of the BBB (hCMEC/D3) with EVs, and permeability as well as adhesion of breast cancer cells were analyzed. Clinical data of a breast cancer cohort was evaluated by χ2-tests, Kaplan-Meier-Analysis, and log-rank tests while for experimental data Student’s T-test was performed.

Results

Among those genes exhibiting a significant association with cerebral metastasis development, the only gene coding for a cytoskeleton-associated protein was Tubulin Tyrosine Ligase Like 4 (TTLL4). Overexpression of TTLL4 (TTLL4plus) in MDA-MB231 and MDA-MB468 breast cancer cells (TTLL4plus cells) significantly increased polyglutamylation of β-tubulin. Moreover, trafficking of secretory vesicles and MVBs was increased in TTLL4plus cells. EVs derived from TTLL4plus cells promote adhesion of MDA-MB231 and MDA-MB468 cells to hCMEC/D3 cells and increase permeability of hCMEC/D3 cell layer.

Conclusions

These data suggest that TTLL4-mediated microtubule polyglutamylation alters exosome homeostasis by regulating trafficking of MVBs. The TTLL4plus-derived EVs may provide a pre-metastatic niche for breast cancer cells by manipulating endothelial cells of the BBB.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hosonaga M, Saya H, Arima Y. Molecular and cellular mechanisms underlying brain metastasis of breast cancer. Cancer Metastasis Rev. 2020;39:711–20. Hosonaga M, Saya H, Arima Y. Molecular and cellular mechanisms underlying brain metastasis of breast cancer. Cancer Metastasis Rev. 2020;39:711–20.
4.
go back to reference Schoumacher M, Goldman RD, Louvard D, Vignjevic DM. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J Cell Biol. 2010;189(3):541–56.PubMedPubMedCentralCrossRef Schoumacher M, Goldman RD, Louvard D, Vignjevic DM. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J Cell Biol. 2010;189(3):541–56.PubMedPubMedCentralCrossRef
5.
go back to reference Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta Mol Cell Res. 2007;1773(5):642–52.CrossRef Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta Mol Cell Res. 2007;1773(5):642–52.CrossRef
6.
go back to reference Gadadhar S, Bodakuntla S, Natarajan K, Janke C. The tubulin code at a glance. J Cell Sci. 2017;130:1347–53.PubMedCrossRef Gadadhar S, Bodakuntla S, Natarajan K, Janke C. The tubulin code at a glance. J Cell Sci. 2017;130:1347–53.PubMedCrossRef
8.
go back to reference Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol. 2011;12:773–86.PubMedCrossRef Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol. 2011;12:773–86.PubMedCrossRef
9.
go back to reference Ludueña RF. Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol. 1997;178:207–75.CrossRef Ludueña RF. Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol. 1997;178:207–75.CrossRef
10.
go back to reference Eddé B, Rossier J, Le Caer JP, Desbruyères E, Gros F, Denoulet P. Posttranslational glutamylation of α-tubulin. Science. 1990;247(4938):83–5.PubMedCrossRef Eddé B, Rossier J, Le Caer JP, Desbruyères E, Gros F, Denoulet P. Posttranslational glutamylation of α-tubulin. Science. 1990;247(4938):83–5.PubMedCrossRef
11.
go back to reference Alexander JE, Hunt DF, Leeo MK, Shabanowitz J, Michel H, Berlin SC, et al. Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry. Proc Natl Acad Sci U S A. 1991;88(June):4685–9.PubMedPubMedCentralCrossRef Alexander JE, Hunt DF, Leeo MK, Shabanowitz J, Michel H, Berlin SC, et al. Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry. Proc Natl Acad Sci U S A. 1991;88(June):4685–9.PubMedPubMedCentralCrossRef
12.
go back to reference Rüdiger M, Plessman U, Klöppel K, Wehland J, Weber K. Class II tubulin, the major brain beta-tubulin isotype is polyglutamylated on glutamic acid residue 435. FEBS Lett. 1992;308(1):101–5.PubMedCrossRef Rüdiger M, Plessman U, Klöppel K, Wehland J, Weber K. Class II tubulin, the major brain beta-tubulin isotype is polyglutamylated on glutamic acid residue 435. FEBS Lett. 1992;308(1):101–5.PubMedCrossRef
13.
go back to reference Redeker V, Melki R, Promé D, Le Caer J-P, Rossier J. Structure of tubulin C-terminal domain obtained by subtilisin treatment - the major apha- and beta-tubulin isotypes from pig brain are glutamylated. FEBS Lett. 1992;313(2):185–92.PubMedCrossRef Redeker V, Melki R, Promé D, Le Caer J-P, Rossier J. Structure of tubulin C-terminal domain obtained by subtilisin treatment - the major apha- and beta-tubulin isotypes from pig brain are glutamylated. FEBS Lett. 1992;313(2):185–92.PubMedCrossRef
14.
go back to reference van Dijk J, Rogowski K, Miro J, Lacroix B, Eddé B, Janke C. A targeted multienzyme mechanism for selective microtubule Polyglutamylation. Mol Cell. 2007;26(3):437–48.PubMedCrossRef van Dijk J, Rogowski K, Miro J, Lacroix B, Eddé B, Janke C. A targeted multienzyme mechanism for selective microtubule Polyglutamylation. Mol Cell. 2007;26(3):437–48.PubMedCrossRef
15.
go back to reference Bonnet C, Boucher D, Lazereg S, Pedrotti B, Islam K, Denoulet P, et al. Differential binding regulation of microtubule-associated proteins MAP 1A, MAP 1B, and MAP 2 by tubulin Polyglutamylation. J Biol Chem. 2001;276(16):12839–48.PubMedCrossRef Bonnet C, Boucher D, Lazereg S, Pedrotti B, Islam K, Denoulet P, et al. Differential binding regulation of microtubule-associated proteins MAP 1A, MAP 1B, and MAP 2 by tubulin Polyglutamylation. J Biol Chem. 2001;276(16):12839–48.PubMedCrossRef
16.
go back to reference Boucher D, Larcher JC, Gros F, Denoulet P. Polyglutamylation of tubulin as a progressive regulator of in vitro interactions between the microtubule-associated protein tau and tubulin. Biochemistry. 1994;33(41):12471–7.PubMedCrossRef Boucher D, Larcher JC, Gros F, Denoulet P. Polyglutamylation of tubulin as a progressive regulator of in vitro interactions between the microtubule-associated protein tau and tubulin. Biochemistry. 1994;33(41):12471–7.PubMedCrossRef
17.
go back to reference Ikegami K, Heier RL, Taruishi M, Takagi H, Mukai M, Shimma S, et al. Loss of α-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci U S A. 2007;104(9):3213–8.PubMedPubMedCentralCrossRef Ikegami K, Heier RL, Taruishi M, Takagi H, Mukai M, Shimma S, et al. Loss of α-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci U S A. 2007;104(9):3213–8.PubMedPubMedCentralCrossRef
18.
go back to reference Larcher JC, Boucher D, Lazereg S, Gros F, Denoulet P. Interaction of kinesin motor domains with α- and β-tubulin subunits at a tau-independent binding site: regulation by polyglutamylation. J Biol Chem. 1996;271(36):22117–24.PubMedCrossRef Larcher JC, Boucher D, Lazereg S, Gros F, Denoulet P. Interaction of kinesin motor domains with α- and β-tubulin subunits at a tau-independent binding site: regulation by polyglutamylation. J Biol Chem. 1996;271(36):22117–24.PubMedCrossRef
19.
go back to reference Balabanian L, Chaudhary AR, Hendricks AG. Traffic control inside the cell: microtubule-based regulation of cargo transport. Biochem Soc. 2018;40(2):14–7.CrossRef Balabanian L, Chaudhary AR, Hendricks AG. Traffic control inside the cell: microtubule-based regulation of cargo transport. Biochem Soc. 2018;40(2):14–7.CrossRef
20.
go back to reference Palmulli R, Van Niel G. To be or not to be... secreted as exosomes, a balance finely tuned by the mechanisms of biogenesis. Essays Biochem. 2018;62(2):177–91.PubMedCrossRef Palmulli R, Van Niel G. To be or not to be... secreted as exosomes, a balance finely tuned by the mechanisms of biogenesis. Essays Biochem. 2018;62(2):177–91.PubMedCrossRef
21.
go back to reference Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75(2):193–208.PubMedCrossRef Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75(2):193–208.PubMedCrossRef
22.
go back to reference Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018;188:1–11.PubMedCrossRef Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018;188:1–11.PubMedCrossRef
23.
go back to reference Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun. 2015;6:6716. Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun. 2015;6:6716.
26.
go back to reference Heinz LS, Muhs S, Schiewek J, Grüb S, Nalaskowski M, Lin YN, et al. Strong fascin expression promotes metastasis independent of its F-actin bundling activity. Oncotarget. 2017;8(66):110077–91.PubMedPubMedCentralCrossRef Heinz LS, Muhs S, Schiewek J, Grüb S, Nalaskowski M, Lin YN, et al. Strong fascin expression promotes metastasis independent of its F-actin bundling activity. Oncotarget. 2017;8(66):110077–91.PubMedPubMedCentralCrossRef
27.
go back to reference Théry C, Clayton A, Amigorena S, Raposo G. Isolation and characterization of Exosomes from cell culture supernatants. Curr Protoc Cell Biol. 2006;30(1):3.22.1–3.22.29.CrossRef Théry C, Clayton A, Amigorena S, Raposo G. Isolation and characterization of Exosomes from cell culture supernatants. Curr Protoc Cell Biol. 2006;30(1):3.22.1–3.22.29.CrossRef
28.
go back to reference Vonderheit A, Helenius A. Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biol. 2005;3(7):1225–38.CrossRef Vonderheit A, Helenius A. Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biol. 2005;3(7):1225–38.CrossRef
29.
go back to reference Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, et al. TrackMate: an open and extensible platform for single-particle tracking. Methods. 2017;115:80–90.PubMedCrossRef Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, et al. TrackMate: an open and extensible platform for single-particle tracking. Methods. 2017;115:80–90.PubMedCrossRef
30.
go back to reference Regnard C, Desbruyères E, Huet JC, Beauvallet C, Pernollet JC, Eddé B. Polyglutamylation of nucleosome assembly proteins. J Biol Chem. 2000;275(21):15969–76.PubMedCrossRef Regnard C, Desbruyères E, Huet JC, Beauvallet C, Pernollet JC, Eddé B. Polyglutamylation of nucleosome assembly proteins. J Biol Chem. 2000;275(21):15969–76.PubMedCrossRef
31.
go back to reference Van Dijk J, Miro J, Strub JM, Lacroix B, Van Dorsselaer A, Edde B, et al. Polyglutamylation is a post-translational modification with a broad range of substrates. J Biol Chem. 2008;283(7):3915–22.PubMedCrossRef Van Dijk J, Miro J, Strub JM, Lacroix B, Van Dorsselaer A, Edde B, et al. Polyglutamylation is a post-translational modification with a broad range of substrates. J Biol Chem. 2008;283(7):3915–22.PubMedCrossRef
32.
go back to reference Sirajuddin M, Rice LM, Vale RD. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol. 2014;16(4):335–44.PubMedPubMedCentralCrossRef Sirajuddin M, Rice LM, Vale RD. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol. 2014;16(4):335–44.PubMedPubMedCentralCrossRef
36.
go back to reference Raiborg C, Wenzel EM, Pedersen NM, Olsvik H, Schink KO, Schultz SW, et al. Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature. 2015;520(7546):234–8.PubMedCrossRef Raiborg C, Wenzel EM, Pedersen NM, Olsvik H, Schink KO, Schultz SW, et al. Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature. 2015;520(7546):234–8.PubMedCrossRef
37.
go back to reference Loubéry S, Wilhelm C, Hurbain I, Neveu S, Louvard D, Coudrier E. Different microtubule motors move early and late endocytic compartments. Traffic. 2008;9(4):492–509.PubMedCrossRef Loubéry S, Wilhelm C, Hurbain I, Neveu S, Louvard D, Coudrier E. Different microtubule motors move early and late endocytic compartments. Traffic. 2008;9(4):492–509.PubMedCrossRef
38.
go back to reference Taverna S, Flugy A, Saieva L, Kohn EC, Santoro A, Meraviglia S, et al. Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer. 2012;130(9):2033–43.PubMedCrossRef Taverna S, Flugy A, Saieva L, Kohn EC, Santoro A, Meraviglia S, et al. Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer. 2012;130(9):2033–43.PubMedCrossRef
39.
go back to reference Whipple RA, Matrone MA, Cho EH, Balzer EM, Vitolo MI, Yoon JR, et al. Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement. Cancer Res. 2010;70(20):8127–37.PubMedPubMedCentralCrossRef Whipple RA, Matrone MA, Cho EH, Balzer EM, Vitolo MI, Yoon JR, et al. Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement. Cancer Res. 2010;70(20):8127–37.PubMedPubMedCentralCrossRef
Metadata
Title
Tubulin Tyrosine Ligase Like 4 (TTLL4) overexpression in breast cancer cells is associated with brain metastasis and alters exosome biogenesis
Authors
Julia Arnold
Juliana Schattschneider
Christine Blechner
Christoph Krisp
Hartmut Schlüter
Michaela Schweizer
Marcus Nalaskowski
Leticia Oliveira-Ferrer
Sabine Windhorst
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2020
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-020-01712-w

Other articles of this Issue 1/2020

Journal of Experimental & Clinical Cancer Research 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine