Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2020

Open Access 01-12-2020 | Review

Proteolysis targeting chimeras (PROTACs) in cancer therapy

Authors: Alberto Ocaña, Atanasio Pandiella

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2020

Login to get access

Abstract

Exploitation of the protein degradation machinery as a therapeutic strategy to degrade oncogenic proteins is experiencing revolutionary advances with the development of proteolysis targeting chimeras (PROTACs). PROTACs are heterobifunctional structures consisting of a ligand that binds a protein to be degraded and a ligand for an E3 ubiquitin ligase. The bridging between the protein of interest and the E3 ligase mediated by the PROTAC facilitates ubiquitination of the protein and its proteasomal degradation. In this review we discuss the molecular medicine behind PROTAC mechanism of action, with special emphasis on recent developments and their potential translation to the clinical setting.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMed Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMed
2.
go back to reference Ocana A, et al. Refining early Antitumoral drug development. Trends Pharmacol Sci. 2018;39:922–5.PubMedCrossRef Ocana A, et al. Refining early Antitumoral drug development. Trends Pharmacol Sci. 2018;39:922–5.PubMedCrossRef
3.
go back to reference Schapira M, et al. Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov. 2019;18:949–63.PubMedCrossRef Schapira M, et al. Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov. 2019;18:949–63.PubMedCrossRef
4.
go back to reference Inobe T, Matouschek A. Paradigms of protein degradation by the proteasome. Curr Opin Struct Biol. 2014;24:156–64.PubMedCrossRef Inobe T, Matouschek A. Paradigms of protein degradation by the proteasome. Curr Opin Struct Biol. 2014;24:156–64.PubMedCrossRef
5.
8.
9.
go back to reference Mullard A. Arvinas’s PROTACs pass first safety and PK analysis. Nat Rev Drug Discov. 2019;18:895.PubMed Mullard A. Arvinas’s PROTACs pass first safety and PK analysis. Nat Rev Drug Discov. 2019;18:895.PubMed
10.
go back to reference Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366:818–22.PubMedCrossRef Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366:818–22.PubMedCrossRef
12.
go back to reference Ballabio A, Bonifacino JS. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 2020;21:101–18.PubMedCrossRef Ballabio A, Bonifacino JS. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 2020;21:101–18.PubMedCrossRef
13.
go back to reference Dvela-Levitt M, et al. Small molecule targets TMED9 and promotes Lysosomal degradation to reverse Proteinopathy. Cell. 2019;178:521–35 e23.PubMedCrossRef Dvela-Levitt M, et al. Small molecule targets TMED9 and promotes Lysosomal degradation to reverse Proteinopathy. Cell. 2019;178:521–35 e23.PubMedCrossRef
18.
go back to reference Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol. 2009;10:319–31.PubMedPubMedCentralCrossRef Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol. 2009;10:319–31.PubMedPubMedCentralCrossRef
19.
go back to reference Popow J, et al. Highly selective PTK2 proteolysis targeting chimeras to probe focal adhesion kinase scaffolding functions. J Med Chem. 2019;62:2508–20.PubMedCrossRef Popow J, et al. Highly selective PTK2 proteolysis targeting chimeras to probe focal adhesion kinase scaffolding functions. J Med Chem. 2019;62:2508–20.PubMedCrossRef
20.
go back to reference van Wijk SJL, Timmers HTM. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J Off Publ Fed Am Soc Exp Biol. 2010;24:981–93. van Wijk SJL, Timmers HTM. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J Off Publ Fed Am Soc Exp Biol. 2010;24:981–93.
23.
go back to reference Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86:129–57.PubMedCrossRef Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86:129–57.PubMedCrossRef
24.
go back to reference Sakamoto KM, et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A. 2001;98:8554–9.PubMedPubMedCentralCrossRef Sakamoto KM, et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A. 2001;98:8554–9.PubMedPubMedCentralCrossRef
25.
go back to reference Schneekloth AR, et al. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg Med Chem Lett. 2008;18:5904–8.PubMedCrossRef Schneekloth AR, et al. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg Med Chem Lett. 2008;18:5904–8.PubMedCrossRef
26.
go back to reference Van Molle I, et al. Dissecting fragment-based lead discovery at the von Hippel-Lindau protein:hypoxia inducible factor 1alpha protein-protein interface. Chem Biol. 2012;19:1300–12.PubMedPubMedCentralCrossRef Van Molle I, et al. Dissecting fragment-based lead discovery at the von Hippel-Lindau protein:hypoxia inducible factor 1alpha protein-protein interface. Chem Biol. 2012;19:1300–12.PubMedPubMedCentralCrossRef
27.
go back to reference Galdeano C, et al. Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von Hippel-Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J Med Chem. 2014;57:8657–63.PubMedPubMedCentralCrossRef Galdeano C, et al. Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von Hippel-Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J Med Chem. 2014;57:8657–63.PubMedPubMedCentralCrossRef
28.
go back to reference Soares P, et al. Group-based optimization of potent and cell-active inhibitors of the von Hippel-Lindau (VHL) E3 ubiquitin ligase: structure-activity relationships leading to the chemical probe (2S,4R)-1-((S)-2-(1-Cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy -N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (VH298). J Med Chem. 2018;61:599–618.PubMedCrossRef Soares P, et al. Group-based optimization of potent and cell-active inhibitors of the von Hippel-Lindau (VHL) E3 ubiquitin ligase: structure-activity relationships leading to the chemical probe (2S,4R)-1-((S)-2-(1-Cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy -N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (VH298). J Med Chem. 2018;61:599–618.PubMedCrossRef
30.
go back to reference Sakamoto KM, et al. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteomics MCP. 2003;2:1350–8.PubMedCrossRef Sakamoto KM, et al. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteomics MCP. 2003;2:1350–8.PubMedCrossRef
31.
36.
37.
go back to reference Qin C, et al. Discovery of QCA570 as an exceptionally potent and efficacious proteolysis targeting chimera (PROTAC) degrader of the Bromodomain and extra-terminal (BET) proteins capable of inducing complete and durable tumor regression. J Med Chem. 2018;61:6685–704.PubMedPubMedCentralCrossRef Qin C, et al. Discovery of QCA570 as an exceptionally potent and efficacious proteolysis targeting chimera (PROTAC) degrader of the Bromodomain and extra-terminal (BET) proteins capable of inducing complete and durable tumor regression. J Med Chem. 2018;61:6685–704.PubMedPubMedCentralCrossRef
38.
go back to reference Noblejas-Lopez MDM, et al. Activity of BET-proteolysis targeting chimeric (PROTAC) compounds in triple negative breast cancer. J Exp Clin Cancer Res CR. 2019;38:383.PubMedCrossRef Noblejas-Lopez MDM, et al. Activity of BET-proteolysis targeting chimeric (PROTAC) compounds in triple negative breast cancer. J Exp Clin Cancer Res CR. 2019;38:383.PubMedCrossRef
40.
go back to reference Raina K, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A. 2016;113:7124–9.PubMedPubMedCentralCrossRef Raina K, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A. 2016;113:7124–9.PubMedPubMedCentralCrossRef
42.
go back to reference Zoppi V, et al. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J Med Chem. 2019;62:699–726.PubMedCrossRef Zoppi V, et al. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J Med Chem. 2019;62:699–726.PubMedCrossRef
43.
go back to reference Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov. 2014;13:337–56.PubMedCrossRef Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov. 2014;13:337–56.PubMedCrossRef
45.
go back to reference Bian J, et al. Discovery of Wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorg Chem. 2018;81:373–81.PubMedCrossRef Bian J, et al. Discovery of Wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorg Chem. 2018;81:373–81.PubMedCrossRef
46.
go back to reference Robb CM, et al. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem Commun Camb Engl. 2017;53:7577–80.CrossRef Robb CM, et al. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem Commun Camb Engl. 2017;53:7577–80.CrossRef
47.
go back to reference Jiang Y, et al. Development of stabilized peptide-based PROTACs against estrogen receptor alpha. ACS Chem Biol. 2018;13:628–35.PubMedCrossRef Jiang Y, et al. Development of stabilized peptide-based PROTACs against estrogen receptor alpha. ACS Chem Biol. 2018;13:628–35.PubMedCrossRef
48.
go back to reference Papatzimas JW, et al. From inhibition to degradation: targeting the Antiapoptotic protein myeloid cell leukemia 1 (MCL1). J Med Chem. 2019;62:5522–40.PubMedCrossRef Papatzimas JW, et al. From inhibition to degradation: targeting the Antiapoptotic protein myeloid cell leukemia 1 (MCL1). J Med Chem. 2019;62:5522–40.PubMedCrossRef
50.
go back to reference Kong X, et al. Drug discovery targeting anaplastic lymphoma kinase (ALK). J Med Chem. 2019;62:10927–54.PubMedCrossRef Kong X, et al. Drug discovery targeting anaplastic lymphoma kinase (ALK). J Med Chem. 2019;62:10927–54.PubMedCrossRef
51.
go back to reference Kang CH, et al. Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC). Biochem Biophys Res Commun. 2018;505:542–7.PubMedCrossRef Kang CH, et al. Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC). Biochem Biophys Res Commun. 2018;505:542–7.PubMedCrossRef
52.
go back to reference McCoull W, et al. Development of a novel B-cell lymphoma 6 (BCL6) PROTAC to provide insight into small molecule targeting of BCL6. ACS Chem Biol. 2018;13:3131–41.PubMedCrossRef McCoull W, et al. Development of a novel B-cell lymphoma 6 (BCL6) PROTAC to provide insight into small molecule targeting of BCL6. ACS Chem Biol. 2018;13:3131–41.PubMedCrossRef
55.
go back to reference Brand M, et al. Homolog-selective degradation as a strategy to probe the function of CDK6 in AML. Cell Chem. Biol. 2019;26:300–6 e9.PubMedCrossRef Brand M, et al. Homolog-selective degradation as a strategy to probe the function of CDK6 in AML. Cell Chem. Biol. 2019;26:300–6 e9.PubMedCrossRef
56.
go back to reference Liu L, et al. UbiHub: a data hub for the explorers of ubiquitination pathways. Bioinforma Oxf Engl. 2019;35:2882–4.CrossRef Liu L, et al. UbiHub: a data hub for the explorers of ubiquitination pathways. Bioinforma Oxf Engl. 2019;35:2882–4.CrossRef
58.
go back to reference Hughes SJ, Ciulli A. Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders. Essays Biochem. 2017;61:505–16.PubMedPubMedCentralCrossRef Hughes SJ, Ciulli A. Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders. Essays Biochem. 2017;61:505–16.PubMedPubMedCentralCrossRef
60.
go back to reference Burslem GM, et al. The advantages of targeted protein degradation over inhibition: An RTK case study. Cell Chem. Biol. 2018;25:67–77 e3.PubMedCrossRef Burslem GM, et al. The advantages of targeted protein degradation over inhibition: An RTK case study. Cell Chem. Biol. 2018;25:67–77 e3.PubMedCrossRef
61.
go back to reference Olson CM, et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol. 2018;14:163–70.PubMedCrossRef Olson CM, et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol. 2018;14:163–70.PubMedCrossRef
62.
go back to reference Testa A, et al. 3-Fluoro-4-hydroxyprolines: synthesis, conformational analysis, and Stereoselective recognition by the VHL E3 ubiquitin ligase for targeted protein degradation. J Am Chem Soc. 2018;140:9299–313.PubMedPubMedCentralCrossRef Testa A, et al. 3-Fluoro-4-hydroxyprolines: synthesis, conformational analysis, and Stereoselective recognition by the VHL E3 ubiquitin ligase for targeted protein degradation. J Am Chem Soc. 2018;140:9299–313.PubMedPubMedCentralCrossRef
63.
go back to reference Chan K-H, et al. Impact of target warhead and linkage vector on inducing protein degradation: comparison of Bromodomain and extra-terminal (BET) degraders derived from Triazolodiazepine (JQ1) and Tetrahydroquinoline (I-BET726) BET inhibitor scaffolds. J Med Chem. 2018;61:504–13.PubMedCrossRef Chan K-H, et al. Impact of target warhead and linkage vector on inducing protein degradation: comparison of Bromodomain and extra-terminal (BET) degraders derived from Triazolodiazepine (JQ1) and Tetrahydroquinoline (I-BET726) BET inhibitor scaffolds. J Med Chem. 2018;61:504–13.PubMedCrossRef
65.
go back to reference Cromm PM, et al. Addressing kinase-independent functions of Fak via PROTAC-mediated degradation. J Am Chem Soc. 2018;140:17019–26.PubMedCrossRef Cromm PM, et al. Addressing kinase-independent functions of Fak via PROTAC-mediated degradation. J Am Chem Soc. 2018;140:17019–26.PubMedCrossRef
66.
go back to reference Bondeson DP, et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 2018;25:78–87 e5.PubMedCrossRef Bondeson DP, et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 2018;25:78–87 e5.PubMedCrossRef
67.
go back to reference Zeng M, et al. Exploring targeted degradation strategy for oncogenic KRAS(G12C). Cell Chem. Biol. 2020;27:19–31 e6.PubMedCrossRef Zeng M, et al. Exploring targeted degradation strategy for oncogenic KRAS(G12C). Cell Chem. Biol. 2020;27:19–31 e6.PubMedCrossRef
68.
go back to reference Khongorzul P, et al. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res MCR. 2020;18:3–19.PubMedCrossRef Khongorzul P, et al. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res MCR. 2020;18:3–19.PubMedCrossRef
69.
go back to reference Niza E, et al. Trastuzumab-targeted biodegradable nanoparticles for enhanced delivery of Dasatinib in HER2+ Metastasic breast Cancer. Nanomater. Basel Switz. 2019;9. Niza E, et al. Trastuzumab-targeted biodegradable nanoparticles for enhanced delivery of Dasatinib in HER2+ Metastasic breast Cancer. Nanomater. Basel Switz. 2019;9.
70.
go back to reference Beck A, et al. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.PubMedCrossRef Beck A, et al. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.PubMedCrossRef
71.
go back to reference Pillow TH, et al. Antibody conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem. 2020;15:17–25.PubMedCrossRef Pillow TH, et al. Antibody conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem. 2020;15:17–25.PubMedCrossRef
72.
go back to reference Honigberg LA, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A. 2010;107:13075–80.PubMedPubMedCentralCrossRef Honigberg LA, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A. 2010;107:13075–80.PubMedPubMedCentralCrossRef
74.
75.
go back to reference Tinworth CP, et al. PROTAC-mediated degradation of Bruton’s tyrosine kinase is inhibited by covalent binding. ACS Chem Biol. 2019;14:342–7.PubMedCrossRef Tinworth CP, et al. PROTAC-mediated degradation of Bruton’s tyrosine kinase is inhibited by covalent binding. ACS Chem Biol. 2019;14:342–7.PubMedCrossRef
76.
go back to reference Flanagan JJ, Qian Y, Gough SM. ARV-471, an oral estrogen receptor PROTAC™ protein degrader for breast cancer. SABCS. 2018;P5–04–18. Flanagan JJ, Qian Y, Gough SM. ARV-471, an oral estrogen receptor PROTAC™ protein degrader for breast cancer. SABCS. 2018;P5–04–18.
77.
go back to reference Salami J, et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol. 2018;1:100.PubMedPubMedCentralCrossRef Salami J, et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol. 2018;1:100.PubMedPubMedCentralCrossRef
78.
go back to reference Zhang L, et al. Acquired resistance to BET-PROTACs (proteolysis-targeting chimeras) caused by genomic alterations in Core components of E3 ligase complexes. Mol Cancer Ther. 2019;18:1302–11.PubMedCrossRef Zhang L, et al. Acquired resistance to BET-PROTACs (proteolysis-targeting chimeras) caused by genomic alterations in Core components of E3 ligase complexes. Mol Cancer Ther. 2019;18:1302–11.PubMedCrossRef
79.
go back to reference Ottis P, et al. Cellular resistance mechanisms to targeted protein degradation converge toward impairment of the engaged ubiquitin transfer pathway. ACS Chem Biol. 2019;14:2215–23.PubMed Ottis P, et al. Cellular resistance mechanisms to targeted protein degradation converge toward impairment of the engaged ubiquitin transfer pathway. ACS Chem Biol. 2019;14:2215–23.PubMed
80.
go back to reference Mayor-Ruiz C, et al. Plasticity of the Cullin-RING ligase repertoire shapes sensitivity to ligand-induced protein degradation. Mol. Cell. 2019;75:849–58 e8.PubMedCrossRef Mayor-Ruiz C, et al. Plasticity of the Cullin-RING ligase repertoire shapes sensitivity to ligand-induced protein degradation. Mol. Cell. 2019;75:849–58 e8.PubMedCrossRef
81.
go back to reference Silva MC, et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. Elife. 2019;8:e45457. Silva MC, et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. Elife. 2019;8:e45457.
83.
go back to reference Saenz DT, et al. Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia. 2017;31:1951–61.PubMedPubMedCentralCrossRef Saenz DT, et al. Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia. 2017;31:1951–61.PubMedPubMedCentralCrossRef
84.
85.
86.
go back to reference Vollmer S, et al. Design, synthesis, and biological evaluation of MEK PROTACs. J Med Chem. 2020;63:157–62.PubMedCrossRef Vollmer S, et al. Design, synthesis, and biological evaluation of MEK PROTACs. J Med Chem. 2020;63:157–62.PubMedCrossRef
87.
go back to reference Burslem GM, et al. Enhancing Antiproliferative activity and selectivity of a FLT-3 inhibitor by proteolysis targeting chimera conversion. J Am Chem Soc. 2018;140:16428–32.PubMedCrossRef Burslem GM, et al. Enhancing Antiproliferative activity and selectivity of a FLT-3 inhibitor by proteolysis targeting chimera conversion. J Am Chem Soc. 2018;140:16428–32.PubMedCrossRef
88.
go back to reference Tovell H, et al. Rapid and reversible knockdown of endogenously tagged Endosomal proteins via an optimized HaloPROTAC degrader. ACS Chem Biol. 2019;14:882–92.PubMedPubMedCentralCrossRef Tovell H, et al. Rapid and reversible knockdown of endogenously tagged Endosomal proteins via an optimized HaloPROTAC degrader. ACS Chem Biol. 2019;14:882–92.PubMedPubMedCentralCrossRef
89.
go back to reference Lai AC, et al. Modular PROTAC Design for the Degradation of oncogenic BCR-ABL. Angew. Chem. Int. Ed Engl. 2016;55:807–10.PubMedCrossRef Lai AC, et al. Modular PROTAC Design for the Degradation of oncogenic BCR-ABL. Angew. Chem. Int. Ed Engl. 2016;55:807–10.PubMedCrossRef
90.
go back to reference Chen H, et al. Pomalidomide hybrids act as proteolysis targeting chimeras: synthesis, anticancer activity and B-Raf degradation. Bioorg Chem. 2019;87:191–9.PubMedCrossRef Chen H, et al. Pomalidomide hybrids act as proteolysis targeting chimeras: synthesis, anticancer activity and B-Raf degradation. Bioorg Chem. 2019;87:191–9.PubMedCrossRef
91.
go back to reference Li Y, et al. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J Med Chem. 2019;62:448–66.PubMedCrossRef Li Y, et al. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J Med Chem. 2019;62:448–66.PubMedCrossRef
Metadata
Title
Proteolysis targeting chimeras (PROTACs) in cancer therapy
Authors
Alberto Ocaña
Atanasio Pandiella
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2020
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-020-01672-1

Other articles of this Issue 1/2020

Journal of Experimental & Clinical Cancer Research 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine