Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2020

01-12-2020 | Metastasis | Review

Cancer-associated adipocytes: emerging supporters in breast cancer

Authors: Chongru Zhao, Min Wu, Ning Zeng, Mingchen Xiong, Weijie Hu, Wenchang Lv, Yi Yi, Qi Zhang, Yiping Wu

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2020

Login to get access

Abstract

Breast cancer (BC) is a malignant breast tumor confronted with high invasion, metastasis and recurrence rate, and adipocytes are the largest components in breast tissue. The aberrant adipocytes, especially the BC-neighbored cancer-associated adipocytes (CAAs), are found in the invasive front of BC. CAAs present a vicious phenotype compared with mature mammary adipocytes and mediate the crosstalk network between adipocytes and BC cells. By releasing multiple adipokines such as leptin, adiponectin, interleukin (IL)-6, chemokine ligand 2 (CCL2) and chemokine ligand 5 (CCL5), CAAs play essential roles in favor of proliferation, angiogenesis, dissemination, invasion and metastasis of BC. This article reviews the recent existing CAAs studies on the functions and mechanisms of adipocytes in the development of BC, including adipokine regulating, metabolic reprogramming, extracellular matrix (ECM) remodeling, microRNAs (miRNAs) and immune cell adjusting. Besides, adipocyte secretome and cellular interactions are implicated in the intervention to BC therapy and autologous fat grafting of breast reconstruction. Therefore, the potential functions and mechanisms of CAAs are very important for unveiling BC oncogenesis and progress. Deciphering the complex network between CAAs and BC is critical for designing therapeutic strategies and achieving the maximum therapeutic effects of BC.
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRef Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRef
2.
go back to reference Ponnusamy L, Natarajan SR, Thangaraj K, Manoharan R. Therapeutic aspects of AMPK in breast cancer: Progress, challenges, and future directions. Biochim. Biophys. Acta - Rev. Cancer. 2020;1874(1):188379.PubMed Ponnusamy L, Natarajan SR, Thangaraj K, Manoharan R. Therapeutic aspects of AMPK in breast cancer: Progress, challenges, and future directions. Biochim. Biophys. Acta - Rev. Cancer. 2020;1874(1):188379.PubMed
3.
go back to reference Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019;15(9):507–24.PubMed Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019;15(9):507–24.PubMed
4.
go back to reference Garcia-Estevez L, Moreno-Bueno G. Updating the role of obesity and cholesterol in breast cancer. Breast Cancer Res. 2019;21(1):35.PubMedPubMedCentral Garcia-Estevez L, Moreno-Bueno G. Updating the role of obesity and cholesterol in breast cancer. Breast Cancer Res. 2019;21(1):35.PubMedPubMedCentral
5.
go back to reference Wu Q, Li B, Li Z, et al. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol. 2019;12(1):95.PubMedPubMedCentral Wu Q, Li B, Li Z, et al. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol. 2019;12(1):95.PubMedPubMedCentral
6.
go back to reference Fletcher SJ, Sacca PA, Pistone-Creydt M, et al. Human breast adipose tissue: characterization of factors that change during tumor progression in human breast cancer. J Exp Clin Cancer Res. 2017;36(1):26.PubMedPubMedCentral Fletcher SJ, Sacca PA, Pistone-Creydt M, et al. Human breast adipose tissue: characterization of factors that change during tumor progression in human breast cancer. J Exp Clin Cancer Res. 2017;36(1):26.PubMedPubMedCentral
7.
go back to reference Cha YJ, Koo JS. Adipokines as therapeutic targets in breast cancer treatment. Expert Opin Ther Targets. 2018;22(11):941–53.PubMed Cha YJ, Koo JS. Adipokines as therapeutic targets in breast cancer treatment. Expert Opin Ther Targets. 2018;22(11):941–53.PubMed
8.
go back to reference Pallegar NK, Christian SL. Adipocytes in the Tumour Microenvironment. In: Siemann DW, editor. Tumor Microenviront. Chichester: Wiley; 2020. p. 1–13. Pallegar NK, Christian SL. Adipocytes in the Tumour Microenvironment. In: Siemann DW, editor. Tumor Microenviront. Chichester: Wiley; 2020. p. 1–13.
9.
go back to reference Tumminia A, Vinciguerra F, Parisi M, et al. Adipose tissue, obesity and Adiponectin: role in endocrine Cancer risk. Int J Mol Sci. 2019;20(12):2863.PubMedCentral Tumminia A, Vinciguerra F, Parisi M, et al. Adipose tissue, obesity and Adiponectin: role in endocrine Cancer risk. Int J Mol Sci. 2019;20(12):2863.PubMedCentral
10.
go back to reference Rybinska I, Agresti R, Trapani A, et al. Adipocytes in breast Cancer, the thick and the thin. Cells. 2020;9(3):560.PubMedCentral Rybinska I, Agresti R, Trapani A, et al. Adipocytes in breast Cancer, the thick and the thin. Cells. 2020;9(3):560.PubMedCentral
11.
go back to reference Lee YK, Jung WH, Koo JS. Adipocytes can induce epithelial-mesenchymal transition in breast cancer cells. Breast Cancer Res Treat. 2015;153(2):323–35.PubMed Lee YK, Jung WH, Koo JS. Adipocytes can induce epithelial-mesenchymal transition in breast cancer cells. Breast Cancer Res Treat. 2015;153(2):323–35.PubMed
12.
go back to reference Fujisaki K, Fujimoto H, Sangai T, et al. Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat. 2015;150(2):255–63.PubMed Fujisaki K, Fujimoto H, Sangai T, et al. Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat. 2015;150(2):255–63.PubMed
13.
go back to reference Choi J, Cha YJ, Koo JS. Adipocyte biology in breast cancer: from silent bystander to active facilitator. Prog Lipid Res. 2018;69(August 2017):11–20.PubMed Choi J, Cha YJ, Koo JS. Adipocyte biology in breast cancer: from silent bystander to active facilitator. Prog Lipid Res. 2018;69(August 2017):11–20.PubMed
14.
go back to reference Dirat B, Bochet L, Dabek M, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast Cancer invasion. Cancer Res. 2011;71(7):2455–65.PubMed Dirat B, Bochet L, Dabek M, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast Cancer invasion. Cancer Res. 2011;71(7):2455–65.PubMed
15.
go back to reference Suárez-Nájera LE, Chanona-Pérez JJ, Valdivia-Flores A, et al. Morphometric study of adipocytes on breast cancer by means of photonic microscopy and image analysis. Microsc Res Tech. 2018;81(2):240–9.PubMed Suárez-Nájera LE, Chanona-Pérez JJ, Valdivia-Flores A, et al. Morphometric study of adipocytes on breast cancer by means of photonic microscopy and image analysis. Microsc Res Tech. 2018;81(2):240–9.PubMed
16.
go back to reference Crake RLI, Phillips E, Kleffmann T, Currie MJ. Co-culture with human breast adipocytes differentially regulates protein abundance in breast Cancer cells. CANCER GENOMICS PROTEOMICS. 2019;16(5):319–32.PubMedCentral Crake RLI, Phillips E, Kleffmann T, Currie MJ. Co-culture with human breast adipocytes differentially regulates protein abundance in breast Cancer cells. CANCER GENOMICS PROTEOMICS. 2019;16(5):319–32.PubMedCentral
17.
go back to reference Cha YJ, Kim E-S, Koo JS. Tumor-associated macrophages and crown-like structures in adipose tissue in breast cancer. Breast Cancer Res Treat. 2018;170(1):15–25.PubMed Cha YJ, Kim E-S, Koo JS. Tumor-associated macrophages and crown-like structures in adipose tissue in breast cancer. Breast Cancer Res Treat. 2018;170(1):15–25.PubMed
18.
go back to reference Sánchez-Jiménez F, Pérez-Pérez A, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and breast Cancer: role of Leptin. Front Oncol. 2019;9(July):1–12. Sánchez-Jiménez F, Pérez-Pérez A, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and breast Cancer: role of Leptin. Front Oncol. 2019;9(July):1–12.
19.
go back to reference Pan H, Deng L-L, Cui J-Q, et al. Association between serum leptin levels and breast cancer risk. Medicine (Baltimore). 2018;97(27):e11345. Pan H, Deng L-L, Cui J-Q, et al. Association between serum leptin levels and breast cancer risk. Medicine (Baltimore). 2018;97(27):e11345.
20.
go back to reference Sultana R, Kataki AC, Borthakur BB, et al. Imbalance in leptin-adiponectin levels and leptin receptor expression as chief contributors to triple negative breast cancer progression in Northeast India. Gene. 2017;621:51–8.PubMed Sultana R, Kataki AC, Borthakur BB, et al. Imbalance in leptin-adiponectin levels and leptin receptor expression as chief contributors to triple negative breast cancer progression in Northeast India. Gene. 2017;621:51–8.PubMed
21.
go back to reference Gnerlich JL, Yao KA, Fitchev PS, et al. Peritumoral expression of Adipokines and fatty acids in breast Cancer. Ann Surg Oncol. 2013;20(S3):731–8. Gnerlich JL, Yao KA, Fitchev PS, et al. Peritumoral expression of Adipokines and fatty acids in breast Cancer. Ann Surg Oncol. 2013;20(S3):731–8.
22.
go back to reference Wei L, Li K, Pang X, et al. Leptin promotes epithelial-mesenchymal transition of breast cancer via the upregulation of pyruvate kinase M2. J Exp Clin Cancer Res. 2016;35(1):166.PubMedPubMedCentral Wei L, Li K, Pang X, et al. Leptin promotes epithelial-mesenchymal transition of breast cancer via the upregulation of pyruvate kinase M2. J Exp Clin Cancer Res. 2016;35(1):166.PubMedPubMedCentral
23.
go back to reference Juárez-Cruz JC, Zuñiga-Eulogio MD, Olea-Flores M, et al. Leptin induces cell migration and invasion in a FAK-Src-dependent manner in breast cancer cells. Endocr Connect. 2019;8(11):1539–52.PubMedPubMedCentral Juárez-Cruz JC, Zuñiga-Eulogio MD, Olea-Flores M, et al. Leptin induces cell migration and invasion in a FAK-Src-dependent manner in breast cancer cells. Endocr Connect. 2019;8(11):1539–52.PubMedPubMedCentral
24.
go back to reference He J, Wei X, Li S-J, et al. Adipocyte-derived IL-6 and leptin promote breast Cancer metastasis via upregulation of Lysyl Hydroxylase-2 expression. Cell Commun. Signal. 2018;16(1):100.PubMedPubMedCentral He J, Wei X, Li S-J, et al. Adipocyte-derived IL-6 and leptin promote breast Cancer metastasis via upregulation of Lysyl Hydroxylase-2 expression. Cell Commun. Signal. 2018;16(1):100.PubMedPubMedCentral
25.
go back to reference Wang T, Fahrmann JF, Lee H, et al. JAK/STAT3-Regulated Fatty Acid β-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metab. 2018;27(1):136–50 e5.PubMed Wang T, Fahrmann JF, Lee H, et al. JAK/STAT3-Regulated Fatty Acid β-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metab. 2018;27(1):136–50 e5.PubMed
26.
go back to reference Li K, Wei L, Huang Y, et al. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion. Int J Oncol. 2016;48(6):2479–87.PubMed Li K, Wei L, Huang Y, et al. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion. Int J Oncol. 2016;48(6):2479–87.PubMed
27.
go back to reference Zhang C, Yue C, Herrmann A, et al. STAT3 Activation-Induced Fatty Acid Oxidation in CD8+ T Effector Cells Is Critical for Obesity-Promoted Breast Tumor Growth. Cell Metab. 2020;31(1):148–61 e5.PubMed Zhang C, Yue C, Herrmann A, et al. STAT3 Activation-Induced Fatty Acid Oxidation in CD8+ T Effector Cells Is Critical for Obesity-Promoted Breast Tumor Growth. Cell Metab. 2020;31(1):148–61 e5.PubMed
28.
go back to reference Maroni P. Leptin, Adiponectin, and Sam68 in bone metastasis from breast Cancer. Int J Mol Sci. 2020;21(3):1051.PubMedCentral Maroni P. Leptin, Adiponectin, and Sam68 in bone metastasis from breast Cancer. Int J Mol Sci. 2020;21(3):1051.PubMedCentral
29.
go back to reference Tuna BG, Cleary M, Dogan S. Roles of Adiponectin signaling related proteins in mammary tumor development. South Clin Istanbul Eurasia. 2019;30(4):290–5. Tuna BG, Cleary M, Dogan S. Roles of Adiponectin signaling related proteins in mammary tumor development. South Clin Istanbul Eurasia. 2019;30(4):290–5.
30.
go back to reference Chung SJ, Nagaraju GP, Nagalingam A, et al. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy. 2017;13(8):1386–403.PubMedPubMedCentral Chung SJ, Nagaraju GP, Nagalingam A, et al. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy. 2017;13(8):1386–403.PubMedPubMedCentral
31.
go back to reference Wu Q, Li B, Sun S, Sun S. Unraveling adipocytes and Cancer links: is there a role for senescence? Front Cell Dev Biol. 2020;8(April):1–7. Wu Q, Li B, Sun S, Sun S. Unraveling adipocytes and Cancer links: is there a role for senescence? Front Cell Dev Biol. 2020;8(April):1–7.
32.
go back to reference Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8(10):774–85.PubMed Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8(10):774–85.PubMed
33.
go back to reference Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41.PubMedPubMedCentral Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41.PubMedPubMedCentral
34.
go back to reference Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62.PubMedPubMedCentral Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62.PubMedPubMedCentral
35.
go back to reference Yoshida GJ. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. J Hematol Oncol. 2017;10(1):1–14. Yoshida GJ. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. J Hematol Oncol. 2017;10(1):1–14.
36.
go back to reference Mauro L, Naimo GD, Gelsomino L, et al. Uncoupling effects of estrogen receptor α on LKB1/AMPK interaction upon adiponectin exposure in breast cancer. FASEB J. 2018;32(8):4343–55.PubMed Mauro L, Naimo GD, Gelsomino L, et al. Uncoupling effects of estrogen receptor α on LKB1/AMPK interaction upon adiponectin exposure in breast cancer. FASEB J. 2018;32(8):4343–55.PubMed
37.
go back to reference Theriau CF, Sauvé OS, Beaudoin M-S, et al. Proliferative endocrine effects of adipose tissue from obese animals on MCF7 cells are ameliorated by resveratrol supplementation. PLoS One. 2017;12(9):e0183897.PubMedPubMedCentral Theriau CF, Sauvé OS, Beaudoin M-S, et al. Proliferative endocrine effects of adipose tissue from obese animals on MCF7 cells are ameliorated by resveratrol supplementation. PLoS One. 2017;12(9):e0183897.PubMedPubMedCentral
38.
go back to reference Ollberding NJ, Kim Y, Shvetsov YB, et al. Prediagnostic Leptin, Adiponectin, C-reactive protein, and the risk of postmenopausal breast Cancer. Cancer Prev Res. 2013;6(3):188–95. Ollberding NJ, Kim Y, Shvetsov YB, et al. Prediagnostic Leptin, Adiponectin, C-reactive protein, and the risk of postmenopausal breast Cancer. Cancer Prev Res. 2013;6(3):188–95.
39.
go back to reference Gyamfi J, Eom M, Koo J-S, Choi J. Multifaceted roles of Interleukin-6 in adipocyte–breast Cancer cell interaction. Transl Oncol. 2018;11(2):275–85.PubMedPubMedCentral Gyamfi J, Eom M, Koo J-S, Choi J. Multifaceted roles of Interleukin-6 in adipocyte–breast Cancer cell interaction. Transl Oncol. 2018;11(2):275–85.PubMedPubMedCentral
40.
go back to reference Bachelot T, Ray-Coquard I, Menetrier-Caux C, et al. Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br J Cancer. 2003;88(11):1721–6.PubMedPubMedCentral Bachelot T, Ray-Coquard I, Menetrier-Caux C, et al. Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br J Cancer. 2003;88(11):1721–6.PubMedPubMedCentral
41.
go back to reference Lee J, Hong BS, Ryu HS, et al. Transition into inflammatory cancer-associated adipocytes in breast cancer microenvironment requires microRNA regulatory mechanism. PLoS One. 2017;12(3):e0174126.PubMedPubMedCentral Lee J, Hong BS, Ryu HS, et al. Transition into inflammatory cancer-associated adipocytes in breast cancer microenvironment requires microRNA regulatory mechanism. PLoS One. 2017;12(3):e0174126.PubMedPubMedCentral
42.
go back to reference Nickel A, Blücher C, Al KO, et al. Adipocytes induce distinct gene expression profiles in mammary tumor cells and enhance inflammatory signaling in invasive breast cancer cells. Sci. Rep. 2018;8(1):9482.PubMedPubMedCentral Nickel A, Blücher C, Al KO, et al. Adipocytes induce distinct gene expression profiles in mammary tumor cells and enhance inflammatory signaling in invasive breast cancer cells. Sci. Rep. 2018;8(1):9482.PubMedPubMedCentral
43.
go back to reference Gyamfi J, Lee Y-H, Eom M, Choi J. Interleukin-6/STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci Rep. 2018;8(1):8859.PubMedPubMedCentral Gyamfi J, Lee Y-H, Eom M, Choi J. Interleukin-6/STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci Rep. 2018;8(1):8859.PubMedPubMedCentral
44.
go back to reference Gyamfi J, Lee Y-H, Min BS, Choi J. Niclosamide reverses adipocyte induced epithelial-mesenchymal transition in breast cancer cells via suppression of the interleukin-6/STAT3 signalling axis. Sci Rep. 2019;9(1):11336.PubMedPubMedCentral Gyamfi J, Lee Y-H, Min BS, Choi J. Niclosamide reverses adipocyte induced epithelial-mesenchymal transition in breast cancer cells via suppression of the interleukin-6/STAT3 signalling axis. Sci Rep. 2019;9(1):11336.PubMedPubMedCentral
45.
go back to reference Yoshimura T. The chemokine MCP-1 (CCL2) in the host interaction with cancer: a foe or ally? Cell Mol Immunol. 2018;15(4):335–45.PubMedPubMedCentral Yoshimura T. The chemokine MCP-1 (CCL2) in the host interaction with cancer: a foe or ally? Cell Mol Immunol. 2018;15(4):335–45.PubMedPubMedCentral
46.
go back to reference Bonapace L, Coissieux M-M, Wyckoff J, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014;515(7525):130–3.PubMed Bonapace L, Coissieux M-M, Wyckoff J, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014;515(7525):130–3.PubMed
47.
go back to reference Hsieh C-C, Huang Y-S. Aspirin breaks the crosstalk between 3T3-L1 adipocytes and 4T1 breast Cancer cells by regulating cytokine production. PLoS One. 2016;11(1):e0147161.PubMedPubMedCentral Hsieh C-C, Huang Y-S. Aspirin breaks the crosstalk between 3T3-L1 adipocytes and 4T1 breast Cancer cells by regulating cytokine production. PLoS One. 2016;11(1):e0147161.PubMedPubMedCentral
48.
go back to reference Santander A, Lopez-Ocejo O, Casas O, et al. Paracrine interactions between adipocytes and tumor cells recruit and modify macrophages to the mammary tumor microenvironment: the role of obesity and inflammation in breast adipose tissue. Cancers (Basel). 2015;7(1):143–78.PubMedPubMedCentral Santander A, Lopez-Ocejo O, Casas O, et al. Paracrine interactions between adipocytes and tumor cells recruit and modify macrophages to the mammary tumor microenvironment: the role of obesity and inflammation in breast adipose tissue. Cancers (Basel). 2015;7(1):143–78.PubMedPubMedCentral
49.
go back to reference Kranjc MK, Novak M, Pestell RG, Lah TT. Cytokine CCL5 and receptor CCR5 axis in glioblastoma multiforme. Radiol Oncol. 2019;53(4):397–406.PubMedPubMedCentral Kranjc MK, Novak M, Pestell RG, Lah TT. Cytokine CCL5 and receptor CCR5 axis in glioblastoma multiforme. Radiol Oncol. 2019;53(4):397–406.PubMedPubMedCentral
50.
go back to reference Zazo S, González-Alonso P, Martin-Aparicio E, et al. Autocrine CCL5 effect mediates trastuzumab resistance by ERK pathway activation in HER2-positive breast cancer. Mol. Cancer Ther. 2020;molcanther.1172:2019. Zazo S, González-Alonso P, Martin-Aparicio E, et al. Autocrine CCL5 effect mediates trastuzumab resistance by ERK pathway activation in HER2-positive breast cancer. Mol. Cancer Ther. 2020;molcanther.1172:2019.
51.
go back to reference Song X, Zhou X, Qin Y, et al. Emodin inhibits epithelial-mesenchymal transition and metastasis of triple negative breast cancer via antagonism of CC-chemokine ligand5 secreted from adipocytes. Int J Mol Med. 2018;42(1):579–88.PubMed Song X, Zhou X, Qin Y, et al. Emodin inhibits epithelial-mesenchymal transition and metastasis of triple negative breast cancer via antagonism of CC-chemokine ligand5 secreted from adipocytes. Int J Mol Med. 2018;42(1):579–88.PubMed
52.
go back to reference D’Esposito V, Liguoro D, Ambrosio MR, et al. Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5. Oncotarget. 2016;7(17):24495–509.PubMedPubMedCentral D’Esposito V, Liguoro D, Ambrosio MR, et al. Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5. Oncotarget. 2016;7(17):24495–509.PubMedPubMedCentral
53.
go back to reference Lee JO, Kim N, Lee HJ, et al. Resistin, a fat-derived secretory factor, promotes metastasis of MDA-MB-231 human breast cancer cells through ERM activation. Sci Rep. 2016;6(1):18923.PubMedPubMedCentral Lee JO, Kim N, Lee HJ, et al. Resistin, a fat-derived secretory factor, promotes metastasis of MDA-MB-231 human breast cancer cells through ERM activation. Sci Rep. 2016;6(1):18923.PubMedPubMedCentral
54.
go back to reference X Y. Hematopoietic Stem Cell-derived Adipocytes Promote Tumor Growth and Cancer Cell Migration. Int J Cancer Res Mol Mech. 2017;3(1):139–48. X Y. Hematopoietic Stem Cell-derived Adipocytes Promote Tumor Growth and Cancer Cell Migration. Int J Cancer Res Mol Mech. 2017;3(1):139–48.
55.
go back to reference Wang C, Gao C, Meng K, et al. Human adipocytes stimulate invasion of breast Cancer MCF-7 cells by secreting IGFBP-2. PLoS One. 2015;10(3):e0119348.PubMedPubMedCentral Wang C, Gao C, Meng K, et al. Human adipocytes stimulate invasion of breast Cancer MCF-7 cells by secreting IGFBP-2. PLoS One. 2015;10(3):e0119348.PubMedPubMedCentral
56.
go back to reference Kolb R, Kluz P, Tan ZW, et al. Obesity-associated inflammation promotes angiogenesis and breast cancer via angiopoietin-like 4. Oncogene. 2019;38(13):2351–63.PubMed Kolb R, Kluz P, Tan ZW, et al. Obesity-associated inflammation promotes angiogenesis and breast cancer via angiopoietin-like 4. Oncogene. 2019;38(13):2351–63.PubMed
57.
go back to reference Vazquez Rodriguez G, Abrahamsson A, Jensen LDE, Dabrosin C. Adipocytes promote early steps of breast Cancer cell dissemination via Interleukin-8. Front Immunol. 2018;9(July):1767.PubMedPubMedCentral Vazquez Rodriguez G, Abrahamsson A, Jensen LDE, Dabrosin C. Adipocytes promote early steps of breast Cancer cell dissemination via Interleukin-8. Front Immunol. 2018;9(July):1767.PubMedPubMedCentral
60.
go back to reference Morad V, Abrahamsson A, Kjölhede P, Dabrosin C. Adipokines and vascular endothelial growth factor in Normal human breast tissue in vivo – correlations and attenuation by dietary flaxseed. J Mammary Gland Biol Neoplasia. 2016;21(1–2):69–76.PubMedPubMedCentral Morad V, Abrahamsson A, Kjölhede P, Dabrosin C. Adipokines and vascular endothelial growth factor in Normal human breast tissue in vivo – correlations and attenuation by dietary flaxseed. J Mammary Gland Biol Neoplasia. 2016;21(1–2):69–76.PubMedPubMedCentral
61.
go back to reference Bougaret L, Delort L, Billard H, et al. Supernatants of adipocytes from obese versus Normal weight women and breast Cancer cells: in vitro impact on angiogenesis. J Cell Physiol. 2017;232(7):1808–16.PubMed Bougaret L, Delort L, Billard H, et al. Supernatants of adipocytes from obese versus Normal weight women and breast Cancer cells: in vitro impact on angiogenesis. J Cell Physiol. 2017;232(7):1808–16.PubMed
62.
go back to reference Schmid R, Wolf K, Robering JW, et al. ADSCs and adipocytes are the main producers in the autotaxin–lysophosphatidic acid axis of breast cancer and healthy mammary tissue in vitro. BMC Cancer. 2018;18(1):1273.PubMedPubMedCentral Schmid R, Wolf K, Robering JW, et al. ADSCs and adipocytes are the main producers in the autotaxin–lysophosphatidic acid axis of breast cancer and healthy mammary tissue in vitro. BMC Cancer. 2018;18(1):1273.PubMedPubMedCentral
63.
go back to reference Volden PA, Skor MN, Johnson MB, et al. Mammary adipose tissue-derived Lysophospholipids promote estrogen receptor-negative mammary epithelial cell proliferation. Cancer Prev Res. 2016;9(5):367–78. Volden PA, Skor MN, Johnson MB, et al. Mammary adipose tissue-derived Lysophospholipids promote estrogen receptor-negative mammary epithelial cell proliferation. Cancer Prev Res. 2016;9(5):367–78.
65.
go back to reference Attane C, Milhas D, Hoy AJ, Muller C. Metabolic remodeling induced by adipocytes: a new Achille heels in invasive breast cancer? Curr Med Chem. 2018;25:1–15. Attane C, Milhas D, Hoy AJ, Muller C. Metabolic remodeling induced by adipocytes: a new Achille heels in invasive breast cancer? Curr Med Chem. 2018;25:1–15.
66.
go back to reference Deberardinis RJ, Cheng T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29(3):313–24.PubMed Deberardinis RJ, Cheng T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29(3):313–24.PubMed
67.
go back to reference Yang L, Achreja A, Yeung T, et al. Targeting stromal glutamine Synthetase in tumors disrupts tumor microenvironment-regulated Cancer cell growth. Cell Metab. 2016;24(5):685–700.PubMedPubMedCentral Yang L, Achreja A, Yeung T, et al. Targeting stromal glutamine Synthetase in tumors disrupts tumor microenvironment-regulated Cancer cell growth. Cell Metab. 2016;24(5):685–700.PubMedPubMedCentral
68.
go back to reference Meyer KA, Neeley CK, Baker NA, et al. Adipocytes promote pancreatic cancer cell proliferation via glutamine transfer. Biochem Biophys Reports. 2016;7:144–9. Meyer KA, Neeley CK, Baker NA, et al. Adipocytes promote pancreatic cancer cell proliferation via glutamine transfer. Biochem Biophys Reports. 2016;7:144–9.
69.
go back to reference Yoshida GJ. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 2015;34(1):1–10. Yoshida GJ. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 2015;34(1):1–10.
70.
go back to reference Munteanu R, Onaciu A, Moldovan C, et al. Adipocyte-based cell therapy in oncology: the role of cancer-associated adipocytes and their reinterpretation as delivery platforms. Pharmaceutics. 2020;12(5):1–32. Munteanu R, Onaciu A, Moldovan C, et al. Adipocyte-based cell therapy in oncology: the role of cancer-associated adipocytes and their reinterpretation as delivery platforms. Pharmaceutics. 2020;12(5):1–32.
71.
go back to reference Dias AS, Almeida CR, Helguero LA, Duarte IF. Metabolic crosstalk in the breast cancer microenvironment. Eur J Cancer. 2019;121:154–71.PubMed Dias AS, Almeida CR, Helguero LA, Duarte IF. Metabolic crosstalk in the breast cancer microenvironment. Eur J Cancer. 2019;121:154–71.PubMed
72.
go back to reference Grigoraş A, Amalinei C, Balan RA, et al. Adipocytes spectrum — from homeostasia to obesity and its associated pathology. Ann Anat - Anat Anzeiger. 2018;219:102–20. Grigoraş A, Amalinei C, Balan RA, et al. Adipocytes spectrum — from homeostasia to obesity and its associated pathology. Ann Anat - Anat Anzeiger. 2018;219:102–20.
73.
go back to reference Yoshida GJ, Azuma A, Miura Y, Orimo A. Activated fibroblast program orchestrates tumor initiation and progression; molecular mechanisms and the associated therapeutic strategies. Int J Mol Sci. 2019;20(9):2256.PubMedCentral Yoshida GJ, Azuma A, Miura Y, Orimo A. Activated fibroblast program orchestrates tumor initiation and progression; molecular mechanisms and the associated therapeutic strategies. Int J Mol Sci. 2019;20(9):2256.PubMedCentral
74.
go back to reference Bochet L, Lehuédé C, Dauvillier S. Adipocyte-Derived Fibroblasts Promote Tumor Progression and Contribute to the Desmoplastic Reaction in Breast Cancer; 2013. p. 5657–68. Bochet L, Lehuédé C, Dauvillier S. Adipocyte-Derived Fibroblasts Promote Tumor Progression and Contribute to the Desmoplastic Reaction in Breast Cancer; 2013. p. 5657–68.
75.
go back to reference Wang YY, Attané C, Milhas D, et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight. 2017;2(4):e87489.PubMedPubMedCentral Wang YY, Attané C, Milhas D, et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight. 2017;2(4):e87489.PubMedPubMedCentral
76.
go back to reference Balaban S, Shearer RF, Lee LS, et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 2017;5(1):1.PubMedPubMedCentral Balaban S, Shearer RF, Lee LS, et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 2017;5(1):1.PubMedPubMedCentral
77.
go back to reference Yang D, Li Y, Xing L, et al. Utilization of adipocyte-derived lipids and enhanced intracellular trafficking of fatty acids contribute to breast cancer progression. Cell Commun. Signal. 2018;16(1):32.PubMedPubMedCentral Yang D, Li Y, Xing L, et al. Utilization of adipocyte-derived lipids and enhanced intracellular trafficking of fatty acids contribute to breast cancer progression. Cell Commun. Signal. 2018;16(1):32.PubMedPubMedCentral
78.
go back to reference Zaoui M, Morel M, Ferrand N, et al. Breast-associated adipocytes Secretome induce fatty acid uptake and invasiveness in breast Cancer cells via CD36 independently of body mass index, menopausal status and mammary density. Cancers (Basel). 2019;11(12):2012. Zaoui M, Morel M, Ferrand N, et al. Breast-associated adipocytes Secretome induce fatty acid uptake and invasiveness in breast Cancer cells via CD36 independently of body mass index, menopausal status and mammary density. Cancers (Basel). 2019;11(12):2012.
79.
go back to reference Wu Q, Li J, Li Z, et al. Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. J Exp Clin Cancer Res. 2019;38(1):223.PubMedPubMedCentral Wu Q, Li J, Li Z, et al. Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. J Exp Clin Cancer Res. 2019;38(1):223.PubMedPubMedCentral
80.
go back to reference Wei X, Li S, He J, et al. Tumor-secreted PAI-1 promotes breast cancer metastasis via the induction of adipocyte-derived collagen remodeling. Cell Commun Signal. 2019;17(1):58.PubMedPubMedCentral Wei X, Li S, He J, et al. Tumor-secreted PAI-1 promotes breast cancer metastasis via the induction of adipocyte-derived collagen remodeling. Cell Commun Signal. 2019;17(1):58.PubMedPubMedCentral
81.
go back to reference Pallegar NK, Garland CJ, Mahendralingam M, et al. A novel 3-dimensional co-culture method reveals a partial Mesenchymal to epithelial transition in breast Cancer cells induced by adipocytes. J Mammary Gland Biol Neoplasia. 2019;24(1):85–97.PubMed Pallegar NK, Garland CJ, Mahendralingam M, et al. A novel 3-dimensional co-culture method reveals a partial Mesenchymal to epithelial transition in breast Cancer cells induced by adipocytes. J Mammary Gland Biol Neoplasia. 2019;24(1):85–97.PubMed
82.
go back to reference Andarawewa KL, Motrescu ER, Chenard M-P, et al. Stromelysin-3 is a potent negative regulator of Adipogenesis participating to Cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res. 2005;65(23):10862–71.PubMed Andarawewa KL, Motrescu ER, Chenard M-P, et al. Stromelysin-3 is a potent negative regulator of Adipogenesis participating to Cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res. 2005;65(23):10862–71.PubMed
83.
go back to reference Iyengar P, Espina V, Williams TW, et al. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest. 2005;115(5):1163–76.PubMedPubMedCentral Iyengar P, Espina V, Williams TW, et al. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest. 2005;115(5):1163–76.PubMedPubMedCentral
84.
go back to reference Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest. 2012;122(11):4243–56.PubMedPubMedCentral Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest. 2012;122(11):4243–56.PubMedPubMedCentral
85.
go back to reference Barcus CE, O’Leary KA, Brockman JL, et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 2017;19(1):9.PubMedPubMedCentral Barcus CE, O’Leary KA, Brockman JL, et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 2017;19(1):9.PubMedPubMedCentral
86.
go back to reference Yoshida GJ. Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways. J Exp Clin Cancer Res. 2020;39(1):112.PubMedPubMedCentral Yoshida GJ. Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways. J Exp Clin Cancer Res. 2020;39(1):112.PubMedPubMedCentral
87.
go back to reference Calvo F, Ege N, Grande-Garcia A, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15(6):637–46.PubMed Calvo F, Ege N, Grande-Garcia A, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15(6):637–46.PubMed
88.
go back to reference Zanconato F, Battilana G, Cordenonsi M, Piccolo S. YAP/TAZ as therapeutic targets in cancer. Curr Opin Pharmacol. 2016;29:26–33.PubMedPubMedCentral Zanconato F, Battilana G, Cordenonsi M, Piccolo S. YAP/TAZ as therapeutic targets in cancer. Curr Opin Pharmacol. 2016;29:26–33.PubMedPubMedCentral
89.
go back to reference Liu X, Long X, Gao Y, et al. Type I collagen inhibits adipogenic differentiation via YAP activation in vitro. J Cell Physiol. 2020;235(2):1821–37.PubMed Liu X, Long X, Gao Y, et al. Type I collagen inhibits adipogenic differentiation via YAP activation in vitro. J Cell Physiol. 2020;235(2):1821–37.PubMed
90.
go back to reference Wang S, Su X, Xu M, et al. Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of hippo signaling pathway. Stem Cell Res Ther. 2019;10(1):1–12. Wang S, Su X, Xu M, et al. Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of hippo signaling pathway. Stem Cell Res Ther. 2019;10(1):1–12.
91.
go back to reference Halvorsen AR, Helland Å, Gromov P, et al. Profiling of microRNAs in tumor interstitial fluid of breast tumors - a novel resource to identify biomarkers for prognostic classification and detection of cancer. Mol Oncol. 2017;11(2):220–34.PubMed Halvorsen AR, Helland Å, Gromov P, et al. Profiling of microRNAs in tumor interstitial fluid of breast tumors - a novel resource to identify biomarkers for prognostic classification and detection of cancer. Mol Oncol. 2017;11(2):220–34.PubMed
92.
go back to reference Bandini E, Rossi T, Gallerani G, Fabbri F. Adipocytes and microRNAs crosstalk: a key tile in the mosaic of breast Cancer microenvironment. Cancers (Basel). 2019;11(10):1451.PubMedCentral Bandini E, Rossi T, Gallerani G, Fabbri F. Adipocytes and microRNAs crosstalk: a key tile in the mosaic of breast Cancer microenvironment. Cancers (Basel). 2019;11(10):1451.PubMedCentral
93.
go back to reference Rajarajan D, Selvarajan S, Charan Raja MR, et al. Genome-wide analysis reveals miR-3184-5p and miR-181c-3p as a critical regulator for adipocytes-associated breast cancer. J Cell Physiol. 2019;234(10):17959–74.PubMed Rajarajan D, Selvarajan S, Charan Raja MR, et al. Genome-wide analysis reveals miR-3184-5p and miR-181c-3p as a critical regulator for adipocytes-associated breast cancer. J Cell Physiol. 2019;234(10):17959–74.PubMed
94.
go back to reference Wu Q, Sun S, Li Z, et al. Tumour-originated exosomal miR-155 triggers cancer-associated cachexia to promote tumour progression. Mol Cancer. 2018;17(1):155.PubMedPubMedCentral Wu Q, Sun S, Li Z, et al. Tumour-originated exosomal miR-155 triggers cancer-associated cachexia to promote tumour progression. Mol Cancer. 2018;17(1):155.PubMedPubMedCentral
95.
go back to reference Picon-Ruiz M, Pan C, Drews-Elger K, et al. Interactions between adipocytes and breast Cancer cells stimulate cytokine production and drive Src/Sox2/miR-302b–mediated malignant progression. Cancer Res. 2016;76(2):491–504.PubMed Picon-Ruiz M, Pan C, Drews-Elger K, et al. Interactions between adipocytes and breast Cancer cells stimulate cytokine production and drive Src/Sox2/miR-302b–mediated malignant progression. Cancer Res. 2016;76(2):491–504.PubMed
97.
go back to reference Huang Y, Liu K, Li Q, et al. Exosomes function in tumor immune microenvironment. Adv Exp Med Biol. 2018;1056:109–22.PubMed Huang Y, Liu K, Li Q, et al. Exosomes function in tumor immune microenvironment. Adv Exp Med Biol. 2018;1056:109–22.PubMed
98.
go back to reference Zhang F, Liu S. Mechanistic insights of adipocyte metabolism in regulating breast cancer progression. Pharmacol Res. 2020;155:104741.PubMed Zhang F, Liu S. Mechanistic insights of adipocyte metabolism in regulating breast cancer progression. Pharmacol Res. 2020;155:104741.PubMed
99.
go back to reference Berger NA. Crown-like structures in breast adipose tissue from Normal weight women: important impact. Cancer Prev Res. 2017;10(4):223–5. Berger NA. Crown-like structures in breast adipose tissue from Normal weight women: important impact. Cancer Prev Res. 2017;10(4):223–5.
100.
go back to reference Arendt LM, McCready J, Keller PJ, et al. Obesity promotes breast Cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res. 2013;73(19):6080–93.PubMed Arendt LM, McCready J, Keller PJ, et al. Obesity promotes breast Cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res. 2013;73(19):6080–93.PubMed
101.
go back to reference Choi J, Gyamfi J, Jang H, Koo JS. The role of tumor-associated macrophage in breast cancer biology. Histol Histopathol. 2018;33(2):133–45.PubMed Choi J, Gyamfi J, Jang H, Koo JS. The role of tumor-associated macrophage in breast cancer biology. Histol Histopathol. 2018;33(2):133–45.PubMed
102.
go back to reference Yadav NVS, Barcikowski A, Uehana Y, et al. Breast adipocyte co-culture increases the expression of pro-angiogenic factors in macrophages. Front Oncol. 2020;10(April):1–12. Yadav NVS, Barcikowski A, Uehana Y, et al. Breast adipocyte co-culture increases the expression of pro-angiogenic factors in macrophages. Front Oncol. 2020;10(April):1–12.
103.
go back to reference Mentoor I, Engelbrecht A-M, van Jaarsveld PJ, Nell T. Chemoresistance: Intricate Interplay Between Breast Tumor Cells and Adipocytes in the Tumor Microenvironment. Front. Endocrinol. (Lausanne). 2018;9(December):1–16. Mentoor I, Engelbrecht A-M, van Jaarsveld PJ, Nell T. Chemoresistance: Intricate Interplay Between Breast Tumor Cells and Adipocytes in the Tumor Microenvironment. Front. Endocrinol. (Lausanne). 2018;9(December):1–16.
104.
go back to reference Lehuédé C, Li X, Dauvillier S, et al. Adipocytes promote breast cancer resistance to chemotherapy, a process amplified by obesity: role of the major vault protein (MVP). Breast Cancer Res. 2019;21(1):7.PubMedPubMedCentral Lehuédé C, Li X, Dauvillier S, et al. Adipocytes promote breast cancer resistance to chemotherapy, a process amplified by obesity: role of the major vault protein (MVP). Breast Cancer Res. 2019;21(1):7.PubMedPubMedCentral
105.
go back to reference Sheng X, Parmentier J-H, Tucci J, et al. Adipocytes sequester and metabolize the chemotherapeutic Daunorubicin. Mol Cancer Res. 2017;15(12):1704–13.PubMedPubMedCentral Sheng X, Parmentier J-H, Tucci J, et al. Adipocytes sequester and metabolize the chemotherapeutic Daunorubicin. Mol Cancer Res. 2017;15(12):1704–13.PubMedPubMedCentral
106.
go back to reference Delort L, Bougaret L, Cholet J, et al. Hormonal therapy resistance and breast Cancer: involvement of adipocytes and Leptin. Nutrients. 2019;11(12):2839.PubMedCentral Delort L, Bougaret L, Cholet J, et al. Hormonal therapy resistance and breast Cancer: involvement of adipocytes and Leptin. Nutrients. 2019;11(12):2839.PubMedCentral
107.
go back to reference Bougaret L, Delort L, Billard H, et al. Adipocyte/breast cancer cell crosstalk in obesity interferes with the anti-proliferative efficacy of tamoxifen. PLoS One. 2018;13(2):e0191571.PubMedPubMedCentral Bougaret L, Delort L, Billard H, et al. Adipocyte/breast cancer cell crosstalk in obesity interferes with the anti-proliferative efficacy of tamoxifen. PLoS One. 2018;13(2):e0191571.PubMedPubMedCentral
108.
go back to reference Chen X, Zha X, Chen W, et al. Leptin attenuates the anti-estrogen effect of tamoxifen in breast cancer. Biomed Pharmacother. 2013;67(1):22–30.PubMed Chen X, Zha X, Chen W, et al. Leptin attenuates the anti-estrogen effect of tamoxifen in breast cancer. Biomed Pharmacother. 2013;67(1):22–30.PubMed
109.
go back to reference Bochet L, Meulle A, Imbert S, et al. Cancer-associated adipocytes promotes breast tumor radioresistance. Biochem Biophys Res Commun. 2011;411(1):102–6.PubMed Bochet L, Meulle A, Imbert S, et al. Cancer-associated adipocytes promotes breast tumor radioresistance. Biochem Biophys Res Commun. 2011;411(1):102–6.PubMed
110.
go back to reference Tang X, Wuest M, Benesch MGK, et al. Inhibition of Autotaxin with GLPG1690 increases the efficacy of radiotherapy and chemotherapy in a mouse model of breast Cancer. Mol Cancer Ther. 2020;19(1):63–74.PubMed Tang X, Wuest M, Benesch MGK, et al. Inhibition of Autotaxin with GLPG1690 increases the efficacy of radiotherapy and chemotherapy in a mouse model of breast Cancer. Mol Cancer Ther. 2020;19(1):63–74.PubMed
111.
go back to reference Meng G, Tang X, Yang Z, et al. Implications for breast cancer treatment from increased autotaxin production in adipose tissue after radiotherapy. FASEB J. 2017;31(9):4064–77.PubMed Meng G, Tang X, Yang Z, et al. Implications for breast cancer treatment from increased autotaxin production in adipose tissue after radiotherapy. FASEB J. 2017;31(9):4064–77.PubMed
112.
go back to reference Griner ES, Wang JK, Joshi PJ, Nahta R. Mechanisms of Adipocytokine-Mediated Trastuzumab Resistance in HER2-Positive Breast Cancer Cell Lines. Curr. Pharmacogenomics Person. Med. 2013;11(1):31–41.PubMedPubMedCentral Griner ES, Wang JK, Joshi PJ, Nahta R. Mechanisms of Adipocytokine-Mediated Trastuzumab Resistance in HER2-Positive Breast Cancer Cell Lines. Curr. Pharmacogenomics Person. Med. 2013;11(1):31–41.PubMedPubMedCentral
113.
go back to reference Duong MN, Cleret A, Matera E-L, et al. Adipose cells promote resistance of breast cancer cells to trastuzumab-mediated antibody-dependent cellular cytotoxicity. Breast Cancer Res. 2015;17(1):57.PubMedPubMedCentral Duong MN, Cleret A, Matera E-L, et al. Adipose cells promote resistance of breast cancer cells to trastuzumab-mediated antibody-dependent cellular cytotoxicity. Breast Cancer Res. 2015;17(1):57.PubMedPubMedCentral
114.
go back to reference Wu B, Sun X, Gupta HB, et al. Adipose PD-L1 modulates PD-1/PD-L1 checkpoint blockade immunotherapy efficacy in breast Cancer. Oncoimmunology. 2018;7(11):e1500107.PubMedPubMedCentral Wu B, Sun X, Gupta HB, et al. Adipose PD-L1 modulates PD-1/PD-L1 checkpoint blockade immunotherapy efficacy in breast Cancer. Oncoimmunology. 2018;7(11):e1500107.PubMedPubMedCentral
115.
go back to reference Laloze J, Varin A, Gilhodes J, et al. Cell-assisted lipotransfer: friend or foe in fat grafting? Systematic review and meta-analysis. J Tissue Eng Regen Med. 2018;12(2):e1237–50.PubMed Laloze J, Varin A, Gilhodes J, et al. Cell-assisted lipotransfer: friend or foe in fat grafting? Systematic review and meta-analysis. J Tissue Eng Regen Med. 2018;12(2):e1237–50.PubMed
116.
go back to reference Gebremeskel S, Gencarelli J, Gareau AJ, et al. Promotion of primary murine breast Cancer growth and metastasis by adipose-derived stem cells is reduced in the presence of autologous fat graft. Plast Reconstr Surg. 2019;143(1):137–47.PubMed Gebremeskel S, Gencarelli J, Gareau AJ, et al. Promotion of primary murine breast Cancer growth and metastasis by adipose-derived stem cells is reduced in the presence of autologous fat graft. Plast Reconstr Surg. 2019;143(1):137–47.PubMed
117.
go back to reference Cohen O, Lam G, Karp N, Choi M. Determining the Oncologic Safety of Autologous Fat Grafting as a Reconstructive Modality. Plast. Reconstr. Surg. 2017;140(3):382e–92e.PubMed Cohen O, Lam G, Karp N, Choi M. Determining the Oncologic Safety of Autologous Fat Grafting as a Reconstructive Modality. Plast. Reconstr. Surg. 2017;140(3):382e–92e.PubMed
118.
go back to reference Silva-Vergara C, Fontdevila J, Weshahy O, et al. Breast Cancer recurrence is not increased with Lipofilling reconstruction. Ann Plast Surg. 2017;79(3):243–8.PubMed Silva-Vergara C, Fontdevila J, Weshahy O, et al. Breast Cancer recurrence is not increased with Lipofilling reconstruction. Ann Plast Surg. 2017;79(3):243–8.PubMed
119.
go back to reference Ryu HS, Lee H-B, Han W, et al. Reduced proliferation in breast cancer cells contacting the neighboring adipocytes in human breast cancer tissues. Breast Cancer Res. 2015;17(1):90.PubMedPubMedCentral Ryu HS, Lee H-B, Han W, et al. Reduced proliferation in breast cancer cells contacting the neighboring adipocytes in human breast cancer tissues. Breast Cancer Res. 2015;17(1):90.PubMedPubMedCentral
Metadata
Title
Cancer-associated adipocytes: emerging supporters in breast cancer
Authors
Chongru Zhao
Min Wu
Ning Zeng
Mingchen Xiong
Weijie Hu
Wenchang Lv
Yi Yi
Qi Zhang
Yiping Wu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2020
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-020-01666-z

Other articles of this Issue 1/2020

Journal of Experimental & Clinical Cancer Research 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine