Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2020

Open Access 01-12-2020 | Research

SM22α+ vascular mural cells are essential for vessel stability in tumors and undergo phenotype transition regulated by Notch signaling

Authors: Xinxin Zhang, Xianchun Yan, Jing Cao, Ziyan Yang, Xiuli Cao, Yufei Zhang, Liang Liang, Minhua Zheng, Xiaowei Liu, Jian Zhang, Hua Han

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2020

Login to get access

Abstract

Background

Malformation of blood vessels represents a hallmark of cancers, but the role and regulation of vascular mural cells (vMCs), including vascular smooth muscle cells (vSMCs) and pericytes, in tumors has not been fully understood. SM22α has been identified as a marker of vSMCs. This study aims at elucidating the function and regulation of SM22α+ mural cells (SM22-MCs) in tumor stroma.

Methods

Gene-modified mice with a SM22α-CreERT2 transgene were employed to deplete SM22-MCs or activate/block Notch signaling in these cells. vSMCs from mouse dorsal aorta (vSMCs-DA) were cultured in vitro. RNA-seq was used to compare gene expression profiles. qRT-PCR and western blotting were used to determine gene expression level. Immunofluorescence was used to observe morphological alterations in tumors.

Results

SM22-MCs are essential for stabilizing tumor vasculature. Notch signaling was downregulated in tumor-derived SM22-MCs and vSMCs-DA treated with cancer cell-derived conditioned medium. Notch activation in SM22-MCs normalized tumor vasculature and repressed tumor growth. On the other hand, Notch disruption aggravated abnormal tumor vasculature and promoted growth and metastasis. Gene expression profiling of vSMCs-DA showed that Notch activation enhances their contractile phenotype and suppresses their secretory phenotype, further attenuating the invasion and proliferation of tumor cells. In contrast, Notch blockade in vSMCs-DA mitigated their contractile phenotype while strengthened the secretory phenotype.

Conclusion

SM22-MCs facilitate vessel stability in tumors, and they gain a secretory phenotype and promote tumor malignancy in the absence of Notch signaling.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wettschureck N, Strilic B, Offermanns S. Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiol Rev. 2019;99(3):1467–525.PubMed Wettschureck N, Strilic B, Offermanns S. Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiol Rev. 2019;99(3):1467–525.PubMed
2.
go back to reference Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17(11):1359–70.PubMed Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17(11):1359–70.PubMed
3.
go back to reference Chung AS, Ferrara N. Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol. 2011;27:563–84.PubMed Chung AS, Ferrara N. Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol. 2011;27:563–84.PubMed
4.
go back to reference Maishi N, Annan DA, Kikuchi H, Hida Y, Hida K. Tumor endothelial heterogeneity in cancer progression. Cancers. 2019;11(10):1511. Maishi N, Annan DA, Kikuchi H, Hida Y, Hida K. Tumor endothelial heterogeneity in cancer progression. Cancers. 2019;11(10):1511.
5.
go back to reference Holm A, Heumann T, Augustin HG. Microvascular mural cell organotypic heterogeneity and functional plasticity. Trend Cell Biol. 2018;28(4):302–16. Holm A, Heumann T, Augustin HG. Microvascular mural cell organotypic heterogeneity and functional plasticity. Trend Cell Biol. 2018;28(4):302–16.
6.
go back to reference Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215.PubMed Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215.PubMed
7.
go back to reference Hosaka K, Yang Y, Seki T, Fischer C, Dubey O, Fredlund E, et al. Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc Nat Acad Sci U S A. 2016;113(38):E5618–27. Hosaka K, Yang Y, Seki T, Fischer C, Dubey O, Fredlund E, et al. Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc Nat Acad Sci U S A. 2016;113(38):E5618–27.
8.
go back to reference Liao Z, Tan ZW, Zhu P, Tan NS. Cancer-associated fibroblasts in tumor microenvironment - accomplices in tumor malignancy. Cell Immunol. 2019;343:103729.PubMed Liao Z, Tan ZW, Zhu P, Tan NS. Cancer-associated fibroblasts in tumor microenvironment - accomplices in tumor malignancy. Cell Immunol. 2019;343:103729.PubMed
9.
go back to reference Cooke VG, LeBleu VS, Keskin D, Khan Z, O'Connell JT, Teng Y, et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell. 2012;21(1):66–81.PubMedPubMedCentral Cooke VG, LeBleu VS, Keskin D, Khan Z, O'Connell JT, Teng Y, et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell. 2012;21(1):66–81.PubMedPubMedCentral
10.
go back to reference Ostman A, Corvigno S. Microvascular mural cells in cancer. Trend Cancer. 2018;4(12):838–48. Ostman A, Corvigno S. Microvascular mural cells in cancer. Trend Cancer. 2018;4(12):838–48.
11.
12.
go back to reference Vandoros GP, Konstantinopoulos PA, Sotiropoulou-Bonikou G, Kominea A, Papachristou GI, Karamouzis MV, et al. PPAR-gamma is expressed and NF-kB pathway is activated and correlates positively with COX-2 expression in stromal myofibroblasts surrounding colon adenocarcinomas. J Cancer Res Clin Oncol. 2006;132(2):76–84.PubMed Vandoros GP, Konstantinopoulos PA, Sotiropoulou-Bonikou G, Kominea A, Papachristou GI, Karamouzis MV, et al. PPAR-gamma is expressed and NF-kB pathway is activated and correlates positively with COX-2 expression in stromal myofibroblasts surrounding colon adenocarcinomas. J Cancer Res Clin Oncol. 2006;132(2):76–84.PubMed
13.
go back to reference Tetzlaff F, Fischer A. Control of blood vessel formation by notch signaling. Adv Exp Med Biol. 2018;1066:319–38.PubMed Tetzlaff F, Fischer A. Control of blood vessel formation by notch signaling. Adv Exp Med Biol. 2018;1066:319–38.PubMed
14.
go back to reference Baeten JT, Lilly B. Notch signaling in vascular smooth muscle cells. Adv Pharmacol. 2017;78:351–82.PubMed Baeten JT, Lilly B. Notch signaling in vascular smooth muscle cells. Adv Pharmacol. 2017;78:351–82.PubMed
15.
go back to reference Morrow D, Guha S, Sweeney C, Birney Y, Walshe T, O'Brien C, et al. Notch and vascular smooth muscle cell phenotype. Circ Res. 2008;103(12):1370–82.PubMed Morrow D, Guha S, Sweeney C, Birney Y, Walshe T, O'Brien C, et al. Notch and vascular smooth muscle cell phenotype. Circ Res. 2008;103(12):1370–82.PubMed
16.
go back to reference Procopio MG, Laszlo C, Al Labban D, Kim DE, Bordignon P, Jo SH, et al. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat Cell Biol. 2015;17(9):1193–204.PubMedPubMedCentral Procopio MG, Laszlo C, Al Labban D, Kim DE, Bordignon P, Jo SH, et al. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat Cell Biol. 2015;17(9):1193–204.PubMedPubMedCentral
17.
go back to reference Dieguez-Hurtado R, Kato K, Giaimo BD, Nieminen-Kelha M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10(1):2817.PubMedPubMedCentral Dieguez-Hurtado R, Kato K, Giaimo BD, Nieminen-Kelha M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10(1):2817.PubMedPubMedCentral
18.
go back to reference Zhang JC, Kim S, Helmke BP, Yu WW, Du KL, Lu MM, et al. Analysis of SM22alpha-deficient mice reveals unanticipated insights into smooth muscle cell differentiation and function. Mol Cell Biol. 2001;21(4):1336–44.PubMedPubMedCentral Zhang JC, Kim S, Helmke BP, Yu WW, Du KL, Lu MM, et al. Analysis of SM22alpha-deficient mice reveals unanticipated insights into smooth muscle cell differentiation and function. Mol Cell Biol. 2001;21(4):1336–44.PubMedPubMedCentral
19.
go back to reference He WQ, Peng YJ, Zhang WC, Lv N, Tang J, Chen C, et al. Myosin light chain kinase is central to smooth muscle contraction and required for gastrointestinal motility in mice. Gastroenterology. 2008;135(2):610–20.PubMed He WQ, Peng YJ, Zhang WC, Lv N, Tang J, Chen C, et al. Myosin light chain kinase is central to smooth muscle contraction and required for gastrointestinal motility in mice. Gastroenterology. 2008;135(2):610–20.PubMed
20.
go back to reference Li N, Zhang J, Liang Y, Shao J, Peng F, Sun M, et al. A controversial tumor marker: is SM22α proper biomarker for gastric cancer cells? J Proteome Res. 2007;6(8):3304–12.PubMed Li N, Zhang J, Liang Y, Shao J, Peng F, Sun M, et al. A controversial tumor marker: is SM22α proper biomarker for gastric cancer cells? J Proteome Res. 2007;6(8):3304–12.PubMed
21.
go back to reference Han H, Tanigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T, et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol. 2002;14(6):637–45.PubMed Han H, Tanigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T, et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol. 2002;14(6):637–45.PubMed
22.
go back to reference Duan JL, Ruan B, Yan XC, Liang L, Song P, Yang ZY, et al. Endothelial notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice. Hepatology. 2018;68(2):677–90.PubMed Duan JL, Ruan B, Yan XC, Liang L, Song P, Yang ZY, et al. Endothelial notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice. Hepatology. 2018;68(2):677–90.PubMed
23.
go back to reference Manetti M, Romano E, Rosa I, Fioretto BS, Praino E, Guiducci S, et al. Systemic sclerosis serum steers the differentiation of adipose-derived stem cells toward profibrotic myofibroblasts: pathophysiologic implications. J Clin Med. 2019;8(8):1256.PubMedCentral Manetti M, Romano E, Rosa I, Fioretto BS, Praino E, Guiducci S, et al. Systemic sclerosis serum steers the differentiation of adipose-derived stem cells toward profibrotic myofibroblasts: pathophysiologic implications. J Clin Med. 2019;8(8):1256.PubMedCentral
24.
go back to reference Airley RE, Loncaster J, Raleigh JA, Harris AL, Davidson SE, Hunter RD, et al. GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. Int J Cancer. 2003;104(1):85–91.PubMed Airley RE, Loncaster J, Raleigh JA, Harris AL, Davidson SE, Hunter RD, et al. GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. Int J Cancer. 2003;104(1):85–91.PubMed
25.
go back to reference Hoskin PJ, Sibtain A, Daley FM, Wilson GD. GLUT1 and CAIX as intrinsic markers of hypoxia in bladder cancer: relationship with vascularity and proliferation as predictors of outcome of ARCON. Brit J Cancer. 2003;89(7):1290–7.PubMedPubMedCentral Hoskin PJ, Sibtain A, Daley FM, Wilson GD. GLUT1 and CAIX as intrinsic markers of hypoxia in bladder cancer: relationship with vascularity and proliferation as predictors of outcome of ARCON. Brit J Cancer. 2003;89(7):1290–7.PubMedPubMedCentral
26.
go back to reference Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet. 2016;388(10043):518–29.PubMed Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet. 2016;388(10043):518–29.PubMed
27.
go back to reference Yuan K, Shamskhou EA, Orcholski ME, Nathan A, Reddy S, Honda H, et al. Loss of endothelium-derived Wnt5a is associated with reduced pericyte recruitment and small vessel loss in pulmonary arterial hypertension. Circulation. 2019;139(14):1710–24.PubMedPubMedCentral Yuan K, Shamskhou EA, Orcholski ME, Nathan A, Reddy S, Honda H, et al. Loss of endothelium-derived Wnt5a is associated with reduced pericyte recruitment and small vessel loss in pulmonary arterial hypertension. Circulation. 2019;139(14):1710–24.PubMedPubMedCentral
28.
go back to reference Gaceb A, Paul G. Pericyte secretome. Adv Exp Med Biol. 2018;1109:139–63.PubMed Gaceb A, Paul G. Pericyte secretome. Adv Exp Med Biol. 2018;1109:139–63.PubMed
29.
go back to reference Chi C, Li DJ, Jiang YJ, Tong J, Fu H, Wu YH, et al. Vascular smooth muscle cell senescence and age-related diseases: state of the art. Biochim Biophys Acta Mol basis Dis. 2019;1865(7):1810–21.PubMed Chi C, Li DJ, Jiang YJ, Tong J, Fu H, Wu YH, et al. Vascular smooth muscle cell senescence and age-related diseases: state of the art. Biochim Biophys Acta Mol basis Dis. 2019;1865(7):1810–21.PubMed
30.
go back to reference Gieniec KA, Butler LM, Worthley DL, Woods SL. Cancer-associated fibroblasts-heroes or villains? Brit J Cancer. 2019;121(4):293–302.PubMedPubMedCentral Gieniec KA, Butler LM, Worthley DL, Woods SL. Cancer-associated fibroblasts-heroes or villains? Brit J Cancer. 2019;121(4):293–302.PubMedPubMedCentral
31.
go back to reference Briot A, Jaroszewicz A, Warren CM, Lu J, Touma M, Rudat C, et al. Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells. Dev Cell. 2014;31(6):707–21.PubMedPubMedCentral Briot A, Jaroszewicz A, Warren CM, Lu J, Touma M, Rudat C, et al. Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells. Dev Cell. 2014;31(6):707–21.PubMedPubMedCentral
32.
go back to reference Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2015;28(6):831–3.PubMed Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2015;28(6):831–3.PubMed
33.
go back to reference Xian X, Hakansson J, Stahlberg A, Lindblom P, Betsholtz C, Gerhardt H, et al. Pericytes limit tumor cell metastasis. J Clin Invest. 2006;116(3):642–51.PubMedPubMedCentral Xian X, Hakansson J, Stahlberg A, Lindblom P, Betsholtz C, Gerhardt H, et al. Pericytes limit tumor cell metastasis. J Clin Invest. 2006;116(3):642–51.PubMedPubMedCentral
34.
go back to reference Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544(7649):250–4.PubMedPubMedCentral Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544(7649):250–4.PubMedPubMedCentral
35.
go back to reference Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Disc. 2019;18(2):99–115. Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Disc. 2019;18(2):99–115.
36.
go back to reference Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 2018;24(8):1277–89.PubMed Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 2018;24(8):1277–89.PubMed
37.
go back to reference Han M, Dong LH, Zheng B, Shi JH, Wen JK, Cheng Y. Smooth muscle 22 alpha maintains the differentiated phenotype of vascular smooth muscle cells by inducing filamentous actin bundling. Life Sci. 2009;84(13–14):394–401.PubMed Han M, Dong LH, Zheng B, Shi JH, Wen JK, Cheng Y. Smooth muscle 22 alpha maintains the differentiated phenotype of vascular smooth muscle cells by inducing filamentous actin bundling. Life Sci. 2009;84(13–14):394–401.PubMed
38.
go back to reference Basatemur GL, Jorgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16(12):727–44.PubMed Basatemur GL, Jorgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16(12):727–44.PubMed
39.
go back to reference Meurette O, Mehlen P. Notch signaling in the tumor microenvironment. Cancer Cell. 2018;34(4):536–48.PubMed Meurette O, Mehlen P. Notch signaling in the tumor microenvironment. Cancer Cell. 2018;34(4):536–48.PubMed
40.
go back to reference Bottoni G, Katarkar A, Tassone B, Ghosh S, Clocchiatti A, Goruppi S, et al. CSL controls telomere maintenance and genome stability in human dermal fibroblasts. Nat Commun. 2019;10(1):3884.PubMedPubMedCentral Bottoni G, Katarkar A, Tassone B, Ghosh S, Clocchiatti A, Goruppi S, et al. CSL controls telomere maintenance and genome stability in human dermal fibroblasts. Nat Commun. 2019;10(1):3884.PubMedPubMedCentral
41.
go back to reference Guichet PO, Guelfi S, Teigell M, Hoppe L, Bakalara N, Bauchet L, et al. Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells. Stem Cells. 2015;33(1):21–34.PubMed Guichet PO, Guelfi S, Teigell M, Hoppe L, Bakalara N, Bauchet L, et al. Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells. Stem Cells. 2015;33(1):21–34.PubMed
42.
go back to reference Morris HE, Neves KB, Montezano AC, MacLean MR, Touyz RM. Notch3 signalling and vascular remodelling in pulmonary arterial hypertension. Clin Sci. 2019;133(24):2481–98. Morris HE, Neves KB, Montezano AC, MacLean MR, Touyz RM. Notch3 signalling and vascular remodelling in pulmonary arterial hypertension. Clin Sci. 2019;133(24):2481–98.
43.
go back to reference Baeten JT, Lilly B. Differential regulation of Notch2 and Notch3 contribute to their unique functions in vascular smooth muscle cells. J Biol Chem. 2015;290(26):16226–37.PubMedPubMedCentral Baeten JT, Lilly B. Differential regulation of Notch2 and Notch3 contribute to their unique functions in vascular smooth muscle cells. J Biol Chem. 2015;290(26):16226–37.PubMedPubMedCentral
44.
go back to reference Havrda MC, Johnson MJ, O'Neill CF, Liaw L. A novel mechanism of transcriptional repression of p27kip1 through notch/HRT2 signaling in vascular smooth muscle cells. Thromb Haemost. 2006;96(3):361–70.PubMed Havrda MC, Johnson MJ, O'Neill CF, Liaw L. A novel mechanism of transcriptional repression of p27kip1 through notch/HRT2 signaling in vascular smooth muscle cells. Thromb Haemost. 2006;96(3):361–70.PubMed
45.
go back to reference Goruppi S, Clocchiatti A, Dotto GP. A role for stromal autophagy in cancer-associated fibroblast activation. Autophagy. 2019;15(4):738–9.PubMedPubMedCentral Goruppi S, Clocchiatti A, Dotto GP. A role for stromal autophagy in cancer-associated fibroblast activation. Autophagy. 2019;15(4):738–9.PubMedPubMedCentral
46.
go back to reference Prime SS, Cirillo N, Hassona Y, Lambert DW, Paterson IC, Mellone M, et al. Fibroblast activation and senescence in oral cancer. J Oral Pathol Med. 2017;46(2):82–8.PubMed Prime SS, Cirillo N, Hassona Y, Lambert DW, Paterson IC, Mellone M, et al. Fibroblast activation and senescence in oral cancer. J Oral Pathol Med. 2017;46(2):82–8.PubMed
47.
go back to reference Hoare M, Narita M. Notch and senescence. Adv Exp Med Biol. 2018;1066:299–318.PubMed Hoare M, Narita M. Notch and senescence. Adv Exp Med Biol. 2018;1066:299–318.PubMed
Metadata
Title
SM22α+ vascular mural cells are essential for vessel stability in tumors and undergo phenotype transition regulated by Notch signaling
Authors
Xinxin Zhang
Xianchun Yan
Jing Cao
Ziyan Yang
Xiuli Cao
Yufei Zhang
Liang Liang
Minhua Zheng
Xiaowei Liu
Jian Zhang
Hua Han
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2020
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-020-01630-x

Other articles of this Issue 1/2020

Journal of Experimental & Clinical Cancer Research 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine