Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2020

Open Access 01-12-2020 | Breast Cancer | Research

A novel bispecific antibody targeting CD3 and prolactin receptor (PRLR) against PRLR-expression breast cancer

Authors: Yuexian Zhou, Huifang Zong, Lei Han, Yueqing Xie, Hua Jiang, John Gilly, Baohong Zhang, Huili Lu, Jie Chen, Rui Sun, Zhidi Pan, Jianwei Zhu

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2020

Login to get access

Abstract

Background

Prolactin receptor (PRLR) is highly expressed in a subset of human breast cancer and prostate cancer, which makes it a potential target for cancer treatment. In clinical trials, the blockade of PRLR was shown to be safe but with poor efficacy. It is therefore urgent to develop new therapies against PRLR target. Bispecific antibodies (BsAbs) could guide immune cells toward tumor cells, and produced remarkable effects in some cancers.

Methods

In this study, a bispecific antibody targeting both tumor antigen PRLR and T cell surface CD3 antigen (PRLR-DbsAb) was constructed by split intein mediated protein transsplicing (BAPTS) system for the first time. Its binding activity was determined by Biacore and Flow cytometry, and target-dependent T cell mediated cytotoxicity was detected using LDH release assay. ELISA was utilized to study the secretion of cytokines by immune cells. Subcutaneous tumor mouse models were used to analyze the in vivo anti-tumor effects of PRLR-DbsAb.

Results

PRLR-DbsAb in vitro could recruit and activate T cells to promote the release of Th1 cytokines IFN- γ and TNF- α, which could kill PRLR expressed breast cancer cells. In xenograft models with breast cancer cell line T47D, NOD/SCID mice intraperitoneally injected with PRLR-DbsAb exhibited significant inhibition of tumor growth and a longer survival compared to mice treated with PRLR monoclonal antibody (PRLR mAb).

Conclusions

Both in vitro and in vivo experiments showed PRLR-DbsAb had a potential therapy of cancer treatment potential therapy for cancer. Immunotherapy may be a promising treatment against the tumor target of PRLR.
Appendix
Available only for authorised users
Literature
1.
go back to reference Touraine P, Martini J-F, Zafrani B, Durand J-C, Labaille F, Malet C, Nicolas A, Trivin C, Postel-Vinay M-C, Kuttenn F, et al.Increased expression of prolactin receptor gene assessed by quantitative polymerase chain reaction in human breast tumors versus normal breast tissues. J Clin Endocrinol Metab. 1998; 83(2):667–74.PubMedCrossRef Touraine P, Martini J-F, Zafrani B, Durand J-C, Labaille F, Malet C, Nicolas A, Trivin C, Postel-Vinay M-C, Kuttenn F, et al.Increased expression of prolactin receptor gene assessed by quantitative polymerase chain reaction in human breast tumors versus normal breast tissues. J Clin Endocrinol Metab. 1998; 83(2):667–74.PubMedCrossRef
2.
go back to reference Reynolds C, Montone KT, Powell CM, Tomaszewski JE, Clevenger CV. Expression of prolactin and its receptor in human breast carcinoma. Endocrinology. 1997; 138(12):5555–60.PubMedCrossRef Reynolds C, Montone KT, Powell CM, Tomaszewski JE, Clevenger CV. Expression of prolactin and its receptor in human breast carcinoma. Endocrinology. 1997; 138(12):5555–60.PubMedCrossRef
3.
go back to reference Gill s. S., Peston D, Vonderhaar B, Shousha S. Expression of prolactin receptors in normal, benign, and malignant breast tissue: an immunohistological study. J Clin Pathol. 2001; 54(12):956–60.PubMedPubMedCentralCrossRef Gill s. S., Peston D, Vonderhaar B, Shousha S. Expression of prolactin receptors in normal, benign, and malignant breast tissue: an immunohistological study. J Clin Pathol. 2001; 54(12):956–60.PubMedPubMedCentralCrossRef
4.
go back to reference Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv. 2012; 30(5):1158–70.PubMedCrossRef Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv. 2012; 30(5):1158–70.PubMedCrossRef
5.
go back to reference Damiano JS, Rendahl KG, Karim C, Embry MG, Ghoddusi M, Holash J, Fanidi A, Abrams TJ, Abraham JA. Neutralization of prolactin receptor function by monoclonal antibody lfa102, a novel potential therapeutic for the treatment of breast cancer. Mol Cancer Ther. 2013; 12(3):295–305.PubMedCrossRef Damiano JS, Rendahl KG, Karim C, Embry MG, Ghoddusi M, Holash J, Fanidi A, Abrams TJ, Abraham JA. Neutralization of prolactin receptor function by monoclonal antibody lfa102, a novel potential therapeutic for the treatment of breast cancer. Mol Cancer Ther. 2013; 12(3):295–305.PubMedCrossRef
6.
go back to reference Agarwal N, Machiels J-P, Suárez C, Lewis N, Higgins M, Wisinski K, Awada A, Maur M, Stein M, Hwang A, et al.Phase i study of the prolactin receptor antagonist lfa102 in metastatic breast and castration-resistant prostate cancer. Oncologist. 2016; 21(5):535–6.PubMedPubMedCentralCrossRef Agarwal N, Machiels J-P, Suárez C, Lewis N, Higgins M, Wisinski K, Awada A, Maur M, Stein M, Hwang A, et al.Phase i study of the prolactin receptor antagonist lfa102 in metastatic breast and castration-resistant prostate cancer. Oncologist. 2016; 21(5):535–6.PubMedPubMedCentralCrossRef
7.
go back to reference Kelly MP, Hickey C, Makonnen S, Coetzee S, Jalal S, Wang Y, Delfino F, Shan J, Potocky TB, Chatterjee I, et al.Preclinical activity of the novel anti-prolactin receptor (prlr) antibody–drug conjugate regn2878-dm1 in prlr-positive breast cancers. Mol Cancer Ther. 2017; 16(7):1299–311.PubMedCrossRef Kelly MP, Hickey C, Makonnen S, Coetzee S, Jalal S, Wang Y, Delfino F, Shan J, Potocky TB, Chatterjee I, et al.Preclinical activity of the novel anti-prolactin receptor (prlr) antibody–drug conjugate regn2878-dm1 in prlr-positive breast cancers. Mol Cancer Ther. 2017; 16(7):1299–311.PubMedCrossRef
8.
go back to reference Andreev J, Thambi N, Bay AEP, Delfino F, Martin J, Kelly MP, Kirshner JR, Rafique A, Kunz A, Nittoli T, et al.Bispecific antibodies and antibody–drug conjugates (adcs) bridging her2 and prolactin receptor improve efficacy of her2 adcs. Mol Cancer Ther. 2017; 16(4):681–93.PubMedCrossRef Andreev J, Thambi N, Bay AEP, Delfino F, Martin J, Kelly MP, Kirshner JR, Rafique A, Kunz A, Nittoli T, et al.Bispecific antibodies and antibody–drug conjugates (adcs) bridging her2 and prolactin receptor improve efficacy of her2 adcs. Mol Cancer Ther. 2017; 16(4):681–93.PubMedCrossRef
9.
11.
go back to reference Leshem Y, O’Brien J, Liu X, Bera TK, Terabe M, Berzofsky JA, Bossenmaier B, Niederfellner G, Tai C-H, Reiter Y, et al.Combining local immunotoxins targeting mesothelin with ctla-4 blockade synergistically eradicates murine cancer by promoting anticancer immunity. Cancer Immunol Res. 2017; 5(8):685–94.PubMedPubMedCentralCrossRef Leshem Y, O’Brien J, Liu X, Bera TK, Terabe M, Berzofsky JA, Bossenmaier B, Niederfellner G, Tai C-H, Reiter Y, et al.Combining local immunotoxins targeting mesothelin with ctla-4 blockade synergistically eradicates murine cancer by promoting anticancer immunity. Cancer Immunol Res. 2017; 5(8):685–94.PubMedPubMedCentralCrossRef
12.
go back to reference Littman D, Hexner E. Cancer immunotherapy with chimeric antigen receptor (car) t cells. J Onco-Nephrol. 2017; 1(3):151–5.CrossRef Littman D, Hexner E. Cancer immunotherapy with chimeric antigen receptor (car) t cells. J Onco-Nephrol. 2017; 1(3):151–5.CrossRef
13.
go back to reference Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018; 18(8):498.PubMedCrossRef Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018; 18(8):498.PubMedCrossRef
14.
go back to reference Huehls AM, Coupet TA, Sentman CL. Bispecific t-cell engagers for cancer immunotherapy. Immunol Cell Biol. 2015; 93(3):290–6.PubMedCrossRef Huehls AM, Coupet TA, Sentman CL. Bispecific t-cell engagers for cancer immunotherapy. Immunol Cell Biol. 2015; 93(3):290–6.PubMedCrossRef
15.
go back to reference Bhandaru M, Rotte A. Monoclonal antibodies for the treatment of melanoma: present and future strategies. In: Human Monoclonal Antibodies. New York: Springer: 2019. p. 83–108. Bhandaru M, Rotte A. Monoclonal antibodies for the treatment of melanoma: present and future strategies. In: Human Monoclonal Antibodies. New York: Springer: 2019. p. 83–108.
16.
go back to reference Marhelava K, Pilch Z, Bajor M, Graczyk-Jarzynka A, Zagozdzon R. Targeting negative and positive immune checkpoints with monoclonal antibodies in therapy of cancer. Cancers. 2019; 11(11):1756.PubMedCentralCrossRef Marhelava K, Pilch Z, Bajor M, Graczyk-Jarzynka A, Zagozdzon R. Targeting negative and positive immune checkpoints with monoclonal antibodies in therapy of cancer. Cancers. 2019; 11(11):1756.PubMedCentralCrossRef
17.
go back to reference Wang X, Guo G, Guan H, Yu Y, Lu J, Yu J. Challenges and potential of pd-1/pd-l1 checkpoint blockade immunotherapy for glioblastoma. J Exp Clin Cancer Res. 2019; 38(1):87.PubMedPubMedCentralCrossRef Wang X, Guo G, Guan H, Yu Y, Lu J, Yu J. Challenges and potential of pd-1/pd-l1 checkpoint blockade immunotherapy for glioblastoma. J Exp Clin Cancer Res. 2019; 38(1):87.PubMedPubMedCentralCrossRef
18.
go back to reference Jiang C, Cao S, Li N, Jiang L, Sun T. Pd-1 and pd-l1 correlated gene expression profiles and their association with clinical outcomes of breast cancer. Cancer Cell Int. 2019; 19(1):233.PubMedPubMedCentralCrossRef Jiang C, Cao S, Li N, Jiang L, Sun T. Pd-1 and pd-l1 correlated gene expression profiles and their association with clinical outcomes of breast cancer. Cancer Cell Int. 2019; 19(1):233.PubMedPubMedCentralCrossRef
19.
go back to reference Kantarjian H, Jabbour E, Topp MS. Blinatumomab for acute lymphoblastic leukemia. N Engl J Med. 2017; 376(23):49.CrossRef Kantarjian H, Jabbour E, Topp MS. Blinatumomab for acute lymphoblastic leukemia. N Engl J Med. 2017; 376(23):49.CrossRef
21.
go back to reference Tabernero J, Melero I, Ros W, Argiles G, Marabelle A, Rodriguez-Ruiz ME, Albanell J, Calvo E, Moreno V, Cleary JM, et al.Phase Ia and Ib studies of the novel carcinoembryonic antigen (CEA) T-cell bispecific (CEA CD3 TCB) antibody as a single agent and in combination with atezolizumab: Preliminary efficacy and safety in patients with metastatic colorectal cancer (mCRC). Am Soc Clin Oncol. 2017. Tabernero J, Melero I, Ros W, Argiles G, Marabelle A, Rodriguez-Ruiz ME, Albanell J, Calvo E, Moreno V, Cleary JM, et al.Phase Ia and Ib studies of the novel carcinoembryonic antigen (CEA) T-cell bispecific (CEA CD3 TCB) antibody as a single agent and in combination with atezolizumab: Preliminary efficacy and safety in patients with metastatic colorectal cancer (mCRC). Am Soc Clin Oncol. 2017.
22.
go back to reference Dillon P, Rathore R, Thakur A, Colvin G, Kouttab N, Lum L. Abstract p1-08-05: A phase i trial of chemotherapy followed by infusions of activated t cells armed with anti-cd3 and anti-her2 bispecific antibody for stage iii, her2+ or her2-breast cancer. 2018. Dillon P, Rathore R, Thakur A, Colvin G, Kouttab N, Lum L. Abstract p1-08-05: A phase i trial of chemotherapy followed by infusions of activated t cells armed with anti-cd3 and anti-her2 bispecific antibody for stage iii, her2+ or her2-breast cancer. 2018.
23.
go back to reference Gedeon PC, Schaller TH, Chitneni SK, Choi BD, Kuan C-T, Suryadevara CM, Snyder DJ, Schmittling RJ, Szafranski SE, Cui X, et al.A rationally designed fully human egfrviii: Cd3-targeted bispecific antibody redirects human t cells to treat patient-derived intracerebral malignant glioma. Clin Cancer Res. 2018; 24(15):3611–31.PubMedPubMedCentralCrossRef Gedeon PC, Schaller TH, Chitneni SK, Choi BD, Kuan C-T, Suryadevara CM, Snyder DJ, Schmittling RJ, Szafranski SE, Cui X, et al.A rationally designed fully human egfrviii: Cd3-targeted bispecific antibody redirects human t cells to treat patient-derived intracerebral malignant glioma. Clin Cancer Res. 2018; 24(15):3611–31.PubMedPubMedCentralCrossRef
24.
go back to reference Lum LG, Choi M, Le TM, Thakur A, Deol A, Ballen KK, Volodin L, Kindwall-Keller TL, Liu Q, Dyson G, et al.Targeting advanced pancreatic cancer with activated t cells armed with anti-CD3 x anti-EGFR bispecific antibody. Am Soc Clin Oncol. 2018. Lum LG, Choi M, Le TM, Thakur A, Deol A, Ballen KK, Volodin L, Kindwall-Keller TL, Liu Q, Dyson G, et al.Targeting advanced pancreatic cancer with activated t cells armed with anti-CD3 x anti-EGFR bispecific antibody. Am Soc Clin Oncol. 2018.
25.
go back to reference Sun LL, Ellerman D, Mathieu M, Hristopoulos M, Chen X, Li Y, Yan X, Clark R, Reyes A, Stefanich E, et al.Anti-cd20/cd3 t cell–dependent bispecific antibody for the treatment of b cell malignancies. Sci Trans Med. 2015; 7(287):287–7028770.CrossRef Sun LL, Ellerman D, Mathieu M, Hristopoulos M, Chen X, Li Y, Yan X, Clark R, Reyes A, Stefanich E, et al.Anti-cd20/cd3 t cell–dependent bispecific antibody for the treatment of b cell malignancies. Sci Trans Med. 2015; 7(287):287–7028770.CrossRef
26.
go back to reference Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol. 2010; 10(5):345.PubMedCrossRef Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol. 2010; 10(5):345.PubMedCrossRef
27.
go back to reference Han L, Chen J, Ding K, Zong H, Xie Y, Jiang H, Zhang B, Lu H, Yin W, Gilly J, et al.Efficient generation of bispecific igg antibodies by split intein mediated protein trans-splicing system. Sci Rep. 2017; 7(1):8360.PubMedPubMedCentralCrossRef Han L, Chen J, Ding K, Zong H, Xie Y, Jiang H, Zhang B, Lu H, Yin W, Gilly J, et al.Efficient generation of bispecific igg antibodies by split intein mediated protein trans-splicing system. Sci Rep. 2017; 7(1):8360.PubMedPubMedCentralCrossRef
28.
go back to reference Han L, Zong H, Zhou Y, Pan Z, Chen J, Ding K, Xie Y, Jiang H, Zhang B, Lu H, et al.Naturally split intein npu dnae mediated rapid generation of bispecific igg antibodies. Methods. 2019; 154:32–7.PubMedCrossRef Han L, Zong H, Zhou Y, Pan Z, Chen J, Ding K, Xie Y, Jiang H, Zhang B, Lu H, et al.Naturally split intein npu dnae mediated rapid generation of bispecific igg antibodies. Methods. 2019; 154:32–7.PubMedCrossRef
29.
go back to reference Ding K, Han L, Zong H, Chen J, Zhang B, Zhu J. Production process reproducibility and product quality consistency of transient gene expression in hek293 cells with anti-pd1 antibody as the model protein. Appl Microbiol Biotechnol. 2017; 101(5):1889–98.PubMedCrossRef Ding K, Han L, Zong H, Chen J, Zhang B, Zhu J. Production process reproducibility and product quality consistency of transient gene expression in hek293 cells with anti-pd1 antibody as the model protein. Appl Microbiol Biotechnol. 2017; 101(5):1889–98.PubMedCrossRef
30.
go back to reference Ingberg E, Theodorsson A, Theodorsson E, Strom J. Methods for long-term 17 β-estradiol administration to mice. Gen Comp Endocrinol. 2012; 175(1):188–93.PubMedCrossRef Ingberg E, Theodorsson A, Theodorsson E, Strom J. Methods for long-term 17 β-estradiol administration to mice. Gen Comp Endocrinol. 2012; 175(1):188–93.PubMedCrossRef
31.
go back to reference Sarkar D, Su Z. -z., Vozhilla N, Park ES, Gupta P, Fisher PB. Dual cancer-specific targeting strategy cures primary and distant breast carcinomas in nude mice. Proc Natl Acad Sci. 2005; 102(39):14034–9.PubMedCrossRefPubMedCentral Sarkar D, Su Z. -z., Vozhilla N, Park ES, Gupta P, Fisher PB. Dual cancer-specific targeting strategy cures primary and distant breast carcinomas in nude mice. Proc Natl Acad Sci. 2005; 102(39):14034–9.PubMedCrossRefPubMedCentral
32.
go back to reference Peirce S, Chen W, Chen W. Quantification of prolactin receptor mrna in multiple human tissues and cancer cell lines by real time rt-pcr. J Endocrinol. 2001; 171(1):1.CrossRef Peirce S, Chen W, Chen W. Quantification of prolactin receptor mrna in multiple human tissues and cancer cell lines by real time rt-pcr. J Endocrinol. 2001; 171(1):1.CrossRef
34.
go back to reference Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y. Cytokines in cancer immunity and immunotherapy. Immunol Rev. 2004; 202(1):275–93.CrossRefPubMed Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y. Cytokines in cancer immunity and immunotherapy. Immunol Rev. 2004; 202(1):275–93.CrossRefPubMed
35.
go back to reference Adams S, Loi S, Toppmeyer D, Cescon D, De Laurentiis M, Nanda R, Winer E, Mukai H, Tamura K, Armstrong AC, et al.Keynote-086 cohort b: pembrolizumab monotherapy for pd-l1–positive, previously untreated, metastatic triple-negative breast cancer (mtnbc). 2018. Adams S, Loi S, Toppmeyer D, Cescon D, De Laurentiis M, Nanda R, Winer E, Mukai H, Tamura K, Armstrong AC, et al.Keynote-086 cohort b: pembrolizumab monotherapy for pd-l1–positive, previously untreated, metastatic triple-negative breast cancer (mtnbc). 2018.
36.
go back to reference Ghebeh H, Mohammed S, Al-Omair A, Qattant A, Lehe C, Al-Qudaihi G, Elkum N, Alshabanah M, Amer SB, Tulbah A, et al.The b7-h1 (pd-l1) t lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia. 2006; 8(3):190–8.PubMedPubMedCentralCrossRef Ghebeh H, Mohammed S, Al-Omair A, Qattant A, Lehe C, Al-Qudaihi G, Elkum N, Alshabanah M, Amer SB, Tulbah A, et al.The b7-h1 (pd-l1) t lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia. 2006; 8(3):190–8.PubMedPubMedCentralCrossRef
37.
38.
go back to reference Goffin V. Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge. Pharmacol Ther. 2017; 179:111–26.PubMedCrossRef Goffin V. Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge. Pharmacol Ther. 2017; 179:111–26.PubMedCrossRef
39.
go back to reference Van ZI, Molthoff CF, Roos JC, Verheijen RH, Van HA, Buist MR, Prinssen HM, Den HW, Kenemans P. Influence of the route of administration on targeting of ovarian cancer with the chimeric monoclonal antibody mov18: i.v. vs. i.p. 2015; 92(1):106–14. Van ZI, Molthoff CF, Roos JC, Verheijen RH, Van HA, Buist MR, Prinssen HM, Den HW, Kenemans P. Influence of the route of administration on targeting of ovarian cancer with the chimeric monoclonal antibody mov18: i.v. vs. i.p. 2015; 92(1):106–14.
40.
go back to reference Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan T, Greiner DL. Multiple defects in innate and adaptive immunologic function in nod/ltsz-scid mice. J Immunol. 1995; 154(1):180–91.PubMed Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan T, Greiner DL. Multiple defects in innate and adaptive immunologic function in nod/ltsz-scid mice. J Immunol. 1995; 154(1):180–91.PubMed
41.
go back to reference McGale P, Taylor C, Correa C, Cutter D, Duane F, Ewertz M, Gray R, Mannu G, Peto R, Whelan T, et al.Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. 2014. McGale P, Taylor C, Correa C, Cutter D, Duane F, Ewertz M, Gray R, Mannu G, Peto R, Whelan T, et al.Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. 2014.
42.
go back to reference Cardoso F, Costa A, Senkus E, Aapro M, André F, Barrios C, Bergh J, Bhattacharyya G, Biganzoli L, Cardoso M, et al.3rd eso–esmo international consensus guidelines for advanced breast cancer (abc 3). Ann Oncol. 2017; 28(1):16–33.PubMedCrossRef Cardoso F, Costa A, Senkus E, Aapro M, André F, Barrios C, Bergh J, Bhattacharyya G, Biganzoli L, Cardoso M, et al.3rd eso–esmo international consensus guidelines for advanced breast cancer (abc 3). Ann Oncol. 2017; 28(1):16–33.PubMedCrossRef
43.
go back to reference Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the b7-1 costimulatory molecule to inhibit t cell responses. Immunity. 2007; 27(1):111–22.PubMedPubMedCentralCrossRef Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the b7-1 costimulatory molecule to inhibit t cell responses. Immunity. 2007; 27(1):111–22.PubMedPubMedCentralCrossRef
44.
go back to reference Yang Q, Saenz SA, Zlotoff DA, Artis D, Bhandoola A. Cutting edge: Natural helper cells derive from lymphoid progenitors. J Immunol. 2011; 187(11):5505–9.PubMedCrossRef Yang Q, Saenz SA, Zlotoff DA, Artis D, Bhandoola A. Cutting edge: Natural helper cells derive from lymphoid progenitors. J Immunol. 2011; 187(11):5505–9.PubMedCrossRef
45.
go back to reference Beckers RK, Selinger CI, Vilain R, Madore J, Wilmott JS, Harvey K, Holliday A, Cooper CL, Robbins E, Gillett D, et al.Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology. 2016; 69(1):25–34.PubMedCrossRef Beckers RK, Selinger CI, Vilain R, Madore J, Wilmott JS, Harvey K, Holliday A, Cooper CL, Robbins E, Gillett D, et al.Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology. 2016; 69(1):25–34.PubMedCrossRef
46.
go back to reference Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, Su X, Wang Y, Gonzalez-Angulo AM, Akcakanat A, et al.Pd-l1 expression in triple-negative breast cancer. Cancer Immunol Res. 2014; 2(4):361–70.PubMedPubMedCentralCrossRef Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, Su X, Wang Y, Gonzalez-Angulo AM, Akcakanat A, et al.Pd-l1 expression in triple-negative breast cancer. Cancer Immunol Res. 2014; 2(4):361–70.PubMedPubMedCentralCrossRef
47.
go back to reference Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, et al.Predictive correlates of response to the anti-pd-l1 antibody mpdl3280a in cancer patients. Nature. 2014; 515(7528):563.PubMedPubMedCentralCrossRef Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, et al.Predictive correlates of response to the anti-pd-l1 antibody mpdl3280a in cancer patients. Nature. 2014; 515(7528):563.PubMedPubMedCentralCrossRef
48.
go back to reference Hamm CA, Moran D, Rao K, Trusk PB, Pry K, Sausen M, Jones S, Velculescu VE, Cristofanilli M, Bacus S. Genomic and immunological tumor profiling identifies targetable pathways and extensive cd8+/pdl1+ immune infiltration in inflammatory breast cancer tumors. Mol Cancer Ther. 2016; 15(7):1746–56.PubMedCrossRef Hamm CA, Moran D, Rao K, Trusk PB, Pry K, Sausen M, Jones S, Velculescu VE, Cristofanilli M, Bacus S. Genomic and immunological tumor profiling identifies targetable pathways and extensive cd8+/pdl1+ immune infiltration in inflammatory breast cancer tumors. Mol Cancer Ther. 2016; 15(7):1746–56.PubMedCrossRef
49.
go back to reference Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al.Pd-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014; 515(7528):568.PubMedPubMedCentralCrossRef Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al.Pd-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014; 515(7528):568.PubMedPubMedCentralCrossRef
Metadata
Title
A novel bispecific antibody targeting CD3 and prolactin receptor (PRLR) against PRLR-expression breast cancer
Authors
Yuexian Zhou
Huifang Zong
Lei Han
Yueqing Xie
Hua Jiang
John Gilly
Baohong Zhang
Huili Lu
Jie Chen
Rui Sun
Zhidi Pan
Jianwei Zhu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2020
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-020-01564-4

Other articles of this Issue 1/2020

Journal of Experimental & Clinical Cancer Research 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine