Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2017

Open Access 01-12-2017 | Research

Targeting the cross-talk between Urokinase receptor and Formyl peptide receptor type 1 to prevent invasion and trans-endothelial migration of melanoma cells

Authors: Concetta Ragone, Michele Minopoli, Vincenzo Ingangi, Giovanni Botti, Federica Fratangelo, Antonello Pessi, Maria Patrizia Stoppelli, Paolo Antonio Ascierto, Gennaro Ciliberto, Maria Letizia Motti, Maria Vincenza Carriero

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

Accumulating evidence demonstrates that the Urokinase Receptor (uPAR) regulates tumor cell migration through its assembly in composite regulatory units with transmembrane receptors, and uPAR88–92 is the minimal sequence required to induce cell motility through the Formyl Peptide Receptor type 1 (FPR1). Both uPAR and FPR1 are involved in melanoma tumor progression, suggesting that they may be targeted for therapeutic purposes. In this study, the role of the uPAR-FPR1 cross-talk to sustain melanoma cell ability to invade extracellular matrix and cross endothelial barriers is investigated. Also, the possibility that inhibition of the uPAR mediated FPR1-dependent signaling may prevent matrix invasion and transendothelial migration of melanoma cells was investigated.

Methods

Expression levels of uPAR and FPR1 were assessed by immunocytochemistry, Western Blot and qRT-PCR. Cell migration was investigated by Boyden chamber and wound-healing assays. Migration and invasion kinetics, trans-endothelial migration and proliferation of melanoma cells were monitored in real time using the xCELLigence technology. The agonist-triggered FPR1 internalization was visualized by confocal microscope. Cell adhesion to endothelium was determined by fluorometer measurement of cell-associated fluorescence or identified on multiple z-series by laser confocal microscopy. The 3D–organotypic models were set up by seeding melanoma cells onto collagen I matrices embedded dermal fibroblasts. Data were analyzed by one-way ANOVA and post-hoc Dunnett t-test for multiple comparisons.

Results

We found that the co-expression of uPAR and FPR1 confers to A375 and M14 melanoma cells a clear-cut capability to move towards chemotactic gradients, to cross extracellular matrix and endothelial monolayers. FPR1 activity is required, as cell migration and invasion were abrogated by receptor desensitization. Finally, melanoma cell ability to move toward chemotactic gradients, invade matrigel or fibroblast-embedded collagen matrices and cross endothelial monolayers are prevented by anti-uPAR84–95 antibodies or by the RI-3 peptide which we have previously shown to inhibit the uPAR84–95/FPR1 interaction.

Conclusions

Collectively, our findings identify uPAR and FPR1 as relevant effectors of melanoma cell invasiveness and suggest that inhibitors of the uPAR84–95/FPR1 cross-talk may be useful for the treatment of metastatic melanoma.
Appendix
Available only for authorised users
Literature
3.
go back to reference Ascierto PA, Grimaldi AM, Anderson A, Bifulco C, Cochran A, Garbe C, et al. Future perspectives in melanoma research: meeting report from the “melanoma bridge”, Napoli, December 5th-8th 2013. J Transl Med. 2014;12:277.CrossRefPubMedPubMedCentral Ascierto PA, Grimaldi AM, Anderson A, Bifulco C, Cochran A, Garbe C, et al. Future perspectives in melanoma research: meeting report from the “melanoma bridge”, Napoli, December 5th-8th 2013. J Transl Med. 2014;12:277.CrossRefPubMedPubMedCentral
4.
go back to reference Azijli K, Stelloo E, Peters GJ, Van Den Eertwegh AJ. New developments in the treatment of metastatic melanoma: immune checkpoint inhibitors and targeted therapies. Anticancer Res. 2014;34:1493–505.PubMed Azijli K, Stelloo E, Peters GJ, Van Den Eertwegh AJ. New developments in the treatment of metastatic melanoma: immune checkpoint inhibitors and targeted therapies. Anticancer Res. 2014;34:1493–505.PubMed
5.
go back to reference Shi H, Hugo W, Kong X, Hong A, Koya RC, Moriceau G, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014;4:80–93.CrossRefPubMed Shi H, Hugo W, Kong X, Hong A, Koya RC, Moriceau G, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014;4:80–93.CrossRefPubMed
6.
go back to reference Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM, Goetz EM, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014;4:94–109.CrossRefPubMed Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM, Goetz EM, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014;4:94–109.CrossRefPubMed
7.
go back to reference Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82.CrossRefPubMed Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82.CrossRefPubMed
8.
go back to reference Malas S, Harrasser M, Lacy KE, Karagiannis SN. Antibody therapies for melanoma: new and emerging opportunities to activate immunity (review). Oncol Rep. 2014;32(3):875–86.CrossRefPubMedPubMedCentral Malas S, Harrasser M, Lacy KE, Karagiannis SN. Antibody therapies for melanoma: new and emerging opportunities to activate immunity (review). Oncol Rep. 2014;32(3):875–86.CrossRefPubMedPubMedCentral
9.
go back to reference De Vries TJ, Quax PH, Denijn M, Verrijp KN, Verheijen JH, Verspaget HW, et al. Plasminogen activators, their inhibitors, and urokinase receptor emerge in late stages of melanocytic tumor progression. Am J Pathol. 1994;144:70–81.PubMedPubMedCentral De Vries TJ, Quax PH, Denijn M, Verrijp KN, Verheijen JH, Verspaget HW, et al. Plasminogen activators, their inhibitors, and urokinase receptor emerge in late stages of melanocytic tumor progression. Am J Pathol. 1994;144:70–81.PubMedPubMedCentral
10.
go back to reference Quax PH, van Muijen GN, Weening-Verhoeff EJ, Lund LR, Dano K, Ruiter DJ, et al. Metastatic behavior of human melanoma cell lines in nude mice correlates with urokinase-type plasminogen activator, its type-1 inhibitor, and urokinase-mediated matrix degradation. J Cell Biol. 1991;115:191–9.CrossRefPubMed Quax PH, van Muijen GN, Weening-Verhoeff EJ, Lund LR, Dano K, Ruiter DJ, et al. Metastatic behavior of human melanoma cell lines in nude mice correlates with urokinase-type plasminogen activator, its type-1 inhibitor, and urokinase-mediated matrix degradation. J Cell Biol. 1991;115:191–9.CrossRefPubMed
11.
go back to reference Rofstad EK, Rasmussen H, Galappathi K, Mathiesen B, Nilsen K, Graff BA. Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptor. Cancer Res. 2002;62:1847–53.PubMed Rofstad EK, Rasmussen H, Galappathi K, Mathiesen B, Nilsen K, Graff BA. Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptor. Cancer Res. 2002;62:1847–53.PubMed
12.
go back to reference Besch R, Berking C, Kammerbauer C, Degitz K. Inhibition urokinase type plasminogen activator receptor induces apoptosis in melanoma cells by activation of p53. Cell Death Differ. 2007;14(4):818–29.CrossRefPubMed Besch R, Berking C, Kammerbauer C, Degitz K. Inhibition urokinase type plasminogen activator receptor induces apoptosis in melanoma cells by activation of p53. Cell Death Differ. 2007;14(4):818–29.CrossRefPubMed
13.
go back to reference Matheis F, Heppt MV, Graf SA, Düwell P, Kammerbauer C, Aigner A, et al. A Bifunctional approach of Immunostimulation and uPAR inhibition shows potent antitumor activity in melanoma. J Invest Dermatol. 2016;136(12):2475–84.CrossRefPubMed Matheis F, Heppt MV, Graf SA, Düwell P, Kammerbauer C, Aigner A, et al. A Bifunctional approach of Immunostimulation and uPAR inhibition shows potent antitumor activity in melanoma. J Invest Dermatol. 2016;136(12):2475–84.CrossRefPubMed
14.
go back to reference Jacobsen B, Ploug M. The urokinase receptor and its structural homologue C4.4A in human cancer: expression, prognosis and pharmacological inhibition. Curr Med Chem. 2008;15:2559–73.CrossRefPubMed Jacobsen B, Ploug M. The urokinase receptor and its structural homologue C4.4A in human cancer: expression, prognosis and pharmacological inhibition. Curr Med Chem. 2008;15:2559–73.CrossRefPubMed
15.
go back to reference Sidenius N, Blasi F. The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev. 2003;22:205–22.CrossRefPubMed Sidenius N, Blasi F. The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev. 2003;22:205–22.CrossRefPubMed
16.
go back to reference Carriero MV, Stoppelli MP. The urokinase-type plasminogen activator and the generation of inhibitors of urokinase activity and signaling. Curr Pharm Des. 2011;17:1944–61.CrossRefPubMed Carriero MV, Stoppelli MP. The urokinase-type plasminogen activator and the generation of inhibitors of urokinase activity and signaling. Curr Pharm Des. 2011;17:1944–61.CrossRefPubMed
17.
go back to reference Mazar AP. Urokinase plasminogen activator receptor choreographs multiple ligand interactions: implications for tumor progression and therapy. Clin Cancer Res. 2008;14(18):5649–55.CrossRefPubMed Mazar AP. Urokinase plasminogen activator receptor choreographs multiple ligand interactions: implications for tumor progression and therapy. Clin Cancer Res. 2008;14(18):5649–55.CrossRefPubMed
18.
go back to reference Carriero MV, Del Vecchio S, Franco P, Potena MI, Chiaradonna F, Botti G, et al. Vitronectin binding to urokinase receptor in human breast cancer. Clin Cancer Res. 1997;3(8):1299–308.PubMed Carriero MV, Del Vecchio S, Franco P, Potena MI, Chiaradonna F, Botti G, et al. Vitronectin binding to urokinase receptor in human breast cancer. Clin Cancer Res. 1997;3(8):1299–308.PubMed
19.
go back to reference Carriero MV, Del Vecchio S, Capozzoli M, Franco P, Fontana L, Zannetti A, et al. Urokinase receptor interacts with alpha(v)beta5 vitronectin receptor, promoting urokinase-dependent cell migration in breast cancer. Cancer Res. 1999;59(20):5307–14.PubMed Carriero MV, Del Vecchio S, Capozzoli M, Franco P, Fontana L, Zannetti A, et al. Urokinase receptor interacts with alpha(v)beta5 vitronectin receptor, promoting urokinase-dependent cell migration in breast cancer. Cancer Res. 1999;59(20):5307–14.PubMed
20.
go back to reference Resnati M, Pallavicini I, Wang JM, Oppenheim J, Serhan CN, Romano M, et al. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc Natl Acad Sci U S A. 2002;99(3):1359–64.CrossRefPubMedPubMedCentral Resnati M, Pallavicini I, Wang JM, Oppenheim J, Serhan CN, Romano M, et al. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc Natl Acad Sci U S A. 2002;99(3):1359–64.CrossRefPubMedPubMedCentral
21.
go back to reference Montuori N, Carriero MV, Salzano S, Rossi G, Ragno P. The cleavage of the urokinase receptor regulates its multiple functions. J Biol Chem. 2002;277(49):46932–9.CrossRefPubMed Montuori N, Carriero MV, Salzano S, Rossi G, Ragno P. The cleavage of the urokinase receptor regulates its multiple functions. J Biol Chem. 2002;277(49):46932–9.CrossRefPubMed
22.
go back to reference Gargiulo L, Longanesi-Cattani I, Bifulco K, Franco P, Raiola R, Campiglia P, et al. Cross-talk between fMLP and vitronectin receptors triggered by urokinase receptor-derived SRSRY peptide. J Biol Chem. 2005;280(26):25225–32.CrossRefPubMed Gargiulo L, Longanesi-Cattani I, Bifulco K, Franco P, Raiola R, Campiglia P, et al. Cross-talk between fMLP and vitronectin receptors triggered by urokinase receptor-derived SRSRY peptide. J Biol Chem. 2005;280(26):25225–32.CrossRefPubMed
23.
go back to reference Blasi F, Sidenius N. The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett. 2010;584(9):1923–30.CrossRefPubMed Blasi F, Sidenius N. The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett. 2010;584(9):1923–30.CrossRefPubMed
24.
go back to reference Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol. 2010;11(1):23–36.CrossRefPubMed Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol. 2010;11(1):23–36.CrossRefPubMed
25.
go back to reference Ploug M, Ellis V. Structure-function relationships in the receptor for urokinase-type plasminogen activator. Comparison to other members of the Ly-6 family and snake venom alpha-neurotoxins. FEBS Lett. 1994;349(2):163–8.CrossRefPubMed Ploug M, Ellis V. Structure-function relationships in the receptor for urokinase-type plasminogen activator. Comparison to other members of the Ly-6 family and snake venom alpha-neurotoxins. FEBS Lett. 1994;349(2):163–8.CrossRefPubMed
26.
go back to reference Gårdsvoll H, Jacobsen B, Kriegbaum MC, Behrendt N, Engelholm L, Østergaard S, et al. Conformational regulation of urokinase receptor function: impact of receptor occupancy and epitope-mapped monoclonal antibodies on lamellipodia induction. J Biol Chem. 2011;286(38):33544–56.CrossRefPubMedPubMedCentral Gårdsvoll H, Jacobsen B, Kriegbaum MC, Behrendt N, Engelholm L, Østergaard S, et al. Conformational regulation of urokinase receptor function: impact of receptor occupancy and epitope-mapped monoclonal antibodies on lamellipodia induction. J Biol Chem. 2011;286(38):33544–56.CrossRefPubMedPubMedCentral
27.
go back to reference Huai Q, Mazar AP, Kuo A, Parry GC, Shaw DE, Callahan J, et al. Structure of human urokinase plasminogen activator in complex with its receptor. Science. 2006;311(5761):656–9.CrossRefPubMed Huai Q, Mazar AP, Kuo A, Parry GC, Shaw DE, Callahan J, et al. Structure of human urokinase plasminogen activator in complex with its receptor. Science. 2006;311(5761):656–9.CrossRefPubMed
28.
go back to reference Barinka C, Parry G, Callahan J, Shaw DE, Kuo A, Bdeir K, et al. Structural basis of interaction between urokinase-type plasminogen activator and its receptor. J Mol Biol. 2006;363(2):482–95.CrossRefPubMedPubMedCentral Barinka C, Parry G, Callahan J, Shaw DE, Kuo A, Bdeir K, et al. Structural basis of interaction between urokinase-type plasminogen activator and its receptor. J Mol Biol. 2006;363(2):482–95.CrossRefPubMedPubMedCentral
29.
go back to reference Xu X, Gardsvoll H, Yuan C, Lin L, Ploug M, Huang M. Crystal structure of the urokinase receptor in a ligand-free form. J Mol Biol. 2012;416(5):629–41.CrossRefPubMed Xu X, Gardsvoll H, Yuan C, Lin L, Ploug M, Huang M. Crystal structure of the urokinase receptor in a ligand-free form. J Mol Biol. 2012;416(5):629–41.CrossRefPubMed
30.
go back to reference Fazioli F, Resnati M, Sidenius N, Higashimoto Y, Appella E, Blasi F. A urokinase-sensitive region of the human urokinase receptor is responsible for its chemotactic activity. EMBO J. 1997;16(24):7279–86.CrossRefPubMedPubMedCentral Fazioli F, Resnati M, Sidenius N, Higashimoto Y, Appella E, Blasi F. A urokinase-sensitive region of the human urokinase receptor is responsible for its chemotactic activity. EMBO J. 1997;16(24):7279–86.CrossRefPubMedPubMedCentral
31.
go back to reference Bifulco K, Longanesi-Cattani I, Gala M, DI Carluccio G, Masucci MT, Pavone V, et al. The soluble form of urokinase receptor promotes angiogenesis through its ser(88)-Arg-ser-Arg-Tyr(92) chemotactic sequence. J Thromb Haemost. 2010;8(12):2789–99.CrossRefPubMed Bifulco K, Longanesi-Cattani I, Gala M, DI Carluccio G, Masucci MT, Pavone V, et al. The soluble form of urokinase receptor promotes angiogenesis through its ser(88)-Arg-ser-Arg-Tyr(92) chemotactic sequence. J Thromb Haemost. 2010;8(12):2789–99.CrossRefPubMed
32.
33.
go back to reference Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, et al. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev. 2009;61(2):119–61.CrossRefPubMedPubMedCentral Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, et al. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev. 2009;61(2):119–61.CrossRefPubMedPubMedCentral
34.
go back to reference Panaro MA, Acquafredda A, Sisto M, Lisi S, Maffione AB, Mitolo V. Biological role of the N-formyl peptide receptors. Immunopharmacol Immunotoxicol. 2006;28(1):103–27.CrossRefPubMed Panaro MA, Acquafredda A, Sisto M, Lisi S, Maffione AB, Mitolo V. Biological role of the N-formyl peptide receptors. Immunopharmacol Immunotoxicol. 2006;28(1):103–27.CrossRefPubMed
35.
go back to reference Chakravarti N, Peddareddigari VG, Warneke CL, Johnson MM, Overwijk WW, Hwu P, et al. Differential expression of the G-protein-coupled formyl peptide receptor in melanoma associates with aggressive phenotype. Am J Dermatopathol. 2013;35(2):184–90.CrossRefPubMed Chakravarti N, Peddareddigari VG, Warneke CL, Johnson MM, Overwijk WW, Hwu P, et al. Differential expression of the G-protein-coupled formyl peptide receptor in melanoma associates with aggressive phenotype. Am J Dermatopathol. 2013;35(2):184–90.CrossRefPubMed
36.
go back to reference Zhang L, Wang H, Yang T, Su Z, Fang D, Wang Y, et al. Formylpeptide receptor 1 mediates the tumorigenicity of human hepatocellular carcinoma cells. Oncoimmunology. 2015;5(2):e1078055.CrossRefPubMedPubMedCentral Zhang L, Wang H, Yang T, Su Z, Fang D, Wang Y, et al. Formylpeptide receptor 1 mediates the tumorigenicity of human hepatocellular carcinoma cells. Oncoimmunology. 2015;5(2):e1078055.CrossRefPubMedPubMedCentral
37.
go back to reference Liu M, Zhao J, Chen K, Bian X, Wang C, Shi Y, et al. G protein-coupled receptor FPR1 as a pharmacologic target in inflammation and human glioblastoma. Int Immunopharmacol. 2012;14(3):283–8.CrossRefPubMedPubMedCentral Liu M, Zhao J, Chen K, Bian X, Wang C, Shi Y, et al. G protein-coupled receptor FPR1 as a pharmacologic target in inflammation and human glioblastoma. Int Immunopharmacol. 2012;14(3):283–8.CrossRefPubMedPubMedCentral
38.
go back to reference Bifulco K, Longanesi-Cattani I, Franco P, Pavone V, Mugione P, Di Carluccio G, et al. Single amino acid substitutions in the chemotactic sequence of urokinase receptor modulate cell migration and invasion. PLoS One. 2012;7(9):e44806.CrossRefPubMedPubMedCentral Bifulco K, Longanesi-Cattani I, Franco P, Pavone V, Mugione P, Di Carluccio G, et al. Single amino acid substitutions in the chemotactic sequence of urokinase receptor modulate cell migration and invasion. PLoS One. 2012;7(9):e44806.CrossRefPubMedPubMedCentral
39.
go back to reference Bifulco K, Longanesi-Cattani I, Gargiulo L, Maglio O, Cataldi M, De Rosa M, et al. An urokinase receptor antagonist that inhibits cell migration by blocking the formyl peptide receptor. FEBS Lett. 2008;582(7):1141–6.CrossRefPubMed Bifulco K, Longanesi-Cattani I, Gargiulo L, Maglio O, Cataldi M, De Rosa M, et al. An urokinase receptor antagonist that inhibits cell migration by blocking the formyl peptide receptor. FEBS Lett. 2008;582(7):1141–6.CrossRefPubMed
40.
go back to reference Carriero MV, Longanesi-Cattani I, Bifulco K, Maglio O, Lista L, Barbieri A, et al. Structure-based design of an urokinase-type plasminogen activator receptor-derived peptide inhibiting cell migration and lung metastasis. Mol Cancer Ther. 2009;8(9):2708–17.CrossRefPubMed Carriero MV, Longanesi-Cattani I, Bifulco K, Maglio O, Lista L, Barbieri A, et al. Structure-based design of an urokinase-type plasminogen activator receptor-derived peptide inhibiting cell migration and lung metastasis. Mol Cancer Ther. 2009;8(9):2708–17.CrossRefPubMed
41.
go back to reference Bifulco K, Longanesi-Cattani I, Liguori E, Arra C, Rea D, Masucci MT, et al. A Urokinase receptor–derived peptide inhibiting VEGF-dependent directional migration and vascular sprouting. Mol Cancer Ther. 2013;12(10):1981–93.CrossRefPubMed Bifulco K, Longanesi-Cattani I, Liguori E, Arra C, Rea D, Masucci MT, et al. A Urokinase receptor–derived peptide inhibiting VEGF-dependent directional migration and vascular sprouting. Mol Cancer Ther. 2013;12(10):1981–93.CrossRefPubMed
42.
go back to reference Carriero MV, Bifulco K, Minopoli M, Lista L, Maglio O, Mele L, et al. UPARANT: a urokinase receptor-derived peptide inhibitor of VEGF-driven angiogenesis with enhanced stability and in vitro and in vivo potency. Mol Cancer Ther. 2014;13(5):1092–104.CrossRefPubMed Carriero MV, Bifulco K, Minopoli M, Lista L, Maglio O, Mele L, et al. UPARANT: a urokinase receptor-derived peptide inhibitor of VEGF-driven angiogenesis with enhanced stability and in vitro and in vivo potency. Mol Cancer Ther. 2014;13(5):1092–104.CrossRefPubMed
43.
go back to reference Carver JA, Esposito G, Viglino P, Fogolari F, Guichard G, Briand JP, et al. Structural comparison between retro-inverso and parent peptides: molecular basis for the biological activity of a retro-inverso analogue of the immunodominant fragment of VP1 coat protein from foot-and-mouth disease virus. Biopolymers. 1997;41(5):569–90.CrossRefPubMed Carver JA, Esposito G, Viglino P, Fogolari F, Guichard G, Briand JP, et al. Structural comparison between retro-inverso and parent peptides: molecular basis for the biological activity of a retro-inverso analogue of the immunodominant fragment of VP1 coat protein from foot-and-mouth disease virus. Biopolymers. 1997;41(5):569–90.CrossRefPubMed
45.
go back to reference Peppicelli S, Bianchini F, Toti A, Laurenzana A, Fibbi G, Calorini L. Extracellular acidity strengthens mesenchymal stem cells to promote melanoma progression. Cell Cycle. 2015;14(19):3088–100.CrossRefPubMedPubMedCentral Peppicelli S, Bianchini F, Toti A, Laurenzana A, Fibbi G, Calorini L. Extracellular acidity strengthens mesenchymal stem cells to promote melanoma progression. Cell Cycle. 2015;14(19):3088–100.CrossRefPubMedPubMedCentral
46.
go back to reference Franco P, Vocca I, Carriero MV, Alfano D, Cito L, Longanesi-Cattani I, et al. Activation of urokinase receptor by a novel interaction between the connecting peptide region of urokinase and (alpha)v(beta)5 integrin. J Cell Sci. 2006;19:3424–34.CrossRef Franco P, Vocca I, Carriero MV, Alfano D, Cito L, Longanesi-Cattani I, et al. Activation of urokinase receptor by a novel interaction between the connecting peptide region of urokinase and (alpha)v(beta)5 integrin. J Cell Sci. 2006;19:3424–34.CrossRef
47.
go back to reference Ingangi V, Bifulco K, Yousif AM, Ragone C, Motti ML, Rea D, et al. The urokinase receptor-derived cyclic peptide [SRSRY] suppresses neovascularization and intravasation of osteosarcoma and chondrosarcoma cells. Oncotarget. 2016;7(34):54474–87.CrossRefPubMedPubMedCentral Ingangi V, Bifulco K, Yousif AM, Ragone C, Motti ML, Rea D, et al. The urokinase receptor-derived cyclic peptide [SRSRY] suppresses neovascularization and intravasation of osteosarcoma and chondrosarcoma cells. Oncotarget. 2016;7(34):54474–87.CrossRefPubMedPubMedCentral
48.
go back to reference Timpson P, McGhee EJ, Erami Z, Nobis M, Quinn JA, Edward M, et al. Organotypic collagen I assay: a malleable platform to assess cell behaviour in a 3-dimensional context. J Vis Exp. 2011;56:e3089. Timpson P, McGhee EJ, Erami Z, Nobis M, Quinn JA, Edward M, et al. Organotypic collagen I assay: a malleable platform to assess cell behaviour in a 3-dimensional context. J Vis Exp. 2011;56:e3089.
49.
go back to reference Margheri F, Luciani C, Taddei ML, Giannoni E, Laurenzana A, Biagioni A, et al. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style. Oncotarget. 2014;5(6):1538–53.CrossRefPubMedPubMedCentral Margheri F, Luciani C, Taddei ML, Giannoni E, Laurenzana A, Biagioni A, et al. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style. Oncotarget. 2014;5(6):1538–53.CrossRefPubMedPubMedCentral
50.
go back to reference Høyer-Hansen G, Rønne E, Solberg H, Behrendt N, Ploug M, Lund LR, Ellis V, Danø K. Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain. J Biol Chem. 1992;267:18224–9.PubMed Høyer-Hansen G, Rønne E, Solberg H, Behrendt N, Ploug M, Lund LR, Ellis V, Danø K. Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain. J Biol Chem. 1992;267:18224–9.PubMed
51.
go back to reference Huang J, Hu J, Bian X, Chen K, Gong W, Dunlop NM, et al. Transactivation of the epidermal growth factor receptor by formylpeptide receptor exacerbates the malignant behavior of human glioblastoma cells. Cancer Res. 2007;67(12):5906–13.CrossRefPubMed Huang J, Hu J, Bian X, Chen K, Gong W, Dunlop NM, et al. Transactivation of the epidermal growth factor receptor by formylpeptide receptor exacerbates the malignant behavior of human glioblastoma cells. Cancer Res. 2007;67(12):5906–13.CrossRefPubMed
52.
go back to reference Dupin E, Calloni GW, Le Douarin NM. The cephalic neural crest of amniote vertebrates is composed of a large majority of precursors endowed with neural, melanocytic, chondrogenic and osteogenic potentialities. Cell Cycle. 2010;9(2):238–49.CrossRefPubMed Dupin E, Calloni GW, Le Douarin NM. The cephalic neural crest of amniote vertebrates is composed of a large majority of precursors endowed with neural, melanocytic, chondrogenic and osteogenic potentialities. Cell Cycle. 2010;9(2):238–49.CrossRefPubMed
53.
go back to reference Friedl P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol. 2004;16(1):14–23.CrossRefPubMed Friedl P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol. 2004;16(1):14–23.CrossRefPubMed
55.
go back to reference Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, et al. Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res. 1990;50(20):6757–64.PubMed Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, et al. Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res. 1990;50(20):6757–64.PubMed
56.
go back to reference Voura EB, Ramjeesingh RA, Montgomery AMP, Siu C-H. Involvement of Integrin αvβ3 and cell adhesion molecule L1 in Transendothelial migration of melanoma cells. Mol Biol Cell. 2001;12(9):2699–710.CrossRefPubMedPubMedCentral Voura EB, Ramjeesingh RA, Montgomery AMP, Siu C-H. Involvement of Integrin αvβ3 and cell adhesion molecule L1 in Transendothelial migration of melanoma cells. Mol Biol Cell. 2001;12(9):2699–710.CrossRefPubMedPubMedCentral
57.
go back to reference Franco P, Carotenuto A, Marcozzi C, Votta G, Sarno C, Iaccarino I, Brancaccio D, De Vincenzo A, Novellino E, Grieco P, Stoppelli MP. Opposite modulation of cell migration by distinct subregions of urokinase connecting peptide. Chembiochem. 2013;14(7):882–9.CrossRefPubMed Franco P, Carotenuto A, Marcozzi C, Votta G, Sarno C, Iaccarino I, Brancaccio D, De Vincenzo A, Novellino E, Grieco P, Stoppelli MP. Opposite modulation of cell migration by distinct subregions of urokinase connecting peptide. Chembiochem. 2013;14(7):882–9.CrossRefPubMed
58.
go back to reference Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W. 3D cell culture systems overcome many of the limitations of traditional two-dimensional (2D) monolayer cell culture systems by mimicking more closely the complex cellular heterogeneity and interactions and tumor microenvironmental conditions. Adv Drug Deliv Rev. 2014;69-70:29–41.CrossRefPubMed Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W. 3D cell culture systems overcome many of the limitations of traditional two-dimensional (2D) monolayer cell culture systems by mimicking more closely the complex cellular heterogeneity and interactions and tumor microenvironmental conditions. Adv Drug Deliv Rev. 2014;69-70:29–41.CrossRefPubMed
59.
go back to reference Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ. Rac activation and inactivation control plasticity of tumor cell movement. Cell. 2008;135:510–23.CrossRefPubMed Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ. Rac activation and inactivation control plasticity of tumor cell movement. Cell. 2008;135:510–23.CrossRefPubMed
61.
go back to reference Jo M, Thomas KS, Somlyo AV, Somlyo AP, Gonias SL. Cooperativity between the Ras-ERK and rho-rho kinase pathways in urokinase-type plasminogen activator-stimulated cell migration. J Biol Chem. 2002;277(14):12479–85.CrossRefPubMed Jo M, Thomas KS, Somlyo AV, Somlyo AP, Gonias SL. Cooperativity between the Ras-ERK and rho-rho kinase pathways in urokinase-type plasminogen activator-stimulated cell migration. J Biol Chem. 2002;277(14):12479–85.CrossRefPubMed
Metadata
Title
Targeting the cross-talk between Urokinase receptor and Formyl peptide receptor type 1 to prevent invasion and trans-endothelial migration of melanoma cells
Authors
Concetta Ragone
Michele Minopoli
Vincenzo Ingangi
Giovanni Botti
Federica Fratangelo
Antonello Pessi
Maria Patrizia Stoppelli
Paolo Antonio Ascierto
Gennaro Ciliberto
Maria Letizia Motti
Maria Vincenza Carriero
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2017
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-017-0650-x

Other articles of this Issue 1/2017

Journal of Experimental & Clinical Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine