Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2017

Open Access 01-12-2017 | Research

The α-melanocyte stimulating hormone/peroxisome proliferator activated receptor-γ pathway down-regulates proliferation in melanoma cell lines

Authors: Enrica Flori, Eleonora Rosati, Giorgia Cardinali, Daniela Kovacs, Barbara Bellei, Mauro Picardo, Vittoria Maresca

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

The α-Melanocyte Stimulating Hormone (αMSH)/Melanocortin-1 receptor (MC1R) interaction promotes melanogenesis through the cAMP/PKA pathway. The direct induction of this pathway by Forskolin (FSK) is also known to enhance melanocyte proliferation. αMSH acts as a mitogenic agent in melanocytes and its effect on proliferation of melanoma cells is less known. We previously identified the αMSH/Peroxisome Proliferator Activated Receptor (PPARγ) pathway as a new pathway on the B16-F10 mouse melanoma cell line. αMSH induced the translocation of PPARγ into the nucleus as an active transcription factor. This effect was independent of the cAMP/PKA pathway and was mediated by the activation of the PI(4,5)P2/PLC pathway, a pathway which we have described to be triggered by the αMSH-dependent MC1R stimulation. Moreover, in the same study, preliminary experiments showed that mouse melanoma cells responded to αMSH by reducing proliferation and that PPARγ was involved in this effect. Due to its key role in the control of cell proliferation, PPARγ agonists are used in therapeutic models for different forms of cancer, including melanoma. The purpose of this study was: (a) to confirm the different proliferative behavior in response to αMSH in healthy and in melanoma condition; (b) to verify whether the cAMP/PKA pathway and the PLC/PPARγ pathway could exert an antagonistic function in the control of proliferation; (c) to deepen the knowledge of the molecular basis responsible for the down-proliferative response of melanoma cells after exposure to αMSH.

Methods

We employed B16-F10 cell line, a human melanoma cell line (Mel 13) and two primary cultures of human melanocytes (NHM 1 and NHM 2, respectively), all expressing a wild type MC1R and responding to the αMSH in terms of pigmentation. We evaluated cell proliferation through: a) cell counting, b) cell cycle analysis c) protein expression of proliferation modulators (p27, p21, cyclin D1 and cyclin E).

Results

The αMSH acted as a mitogenic agent in primary cultures of human melanocytes, whereas it determined a slow down of proliferation in melanoma cell lines. FSK, as an inducer of the cAMP/PKA pathway, reproduced the αMSH mediated effect on proliferation in NHMs but it did not mimic the αMSH effect on proliferation in B16-F10 and Mel 13 melanoma cell lines. Meanwhile, 3 M3-FBS (3 M3), as an inducer of PI(4,5)P2/PLC pathway, reproduced the αMSH proliferative effect. Further experiments, treating melanoma cell lines with αMSH in the presence/absence of GW9662, as an inhibitor of PPARγ, confirmed the key role of this transcription factor in decreasing cell proliferation in response to the hormone exposure.

Conclusions

In both melanoma cell lines, αMSH determined the reduction of proliferation through the PI(4,5)P2/PLC pathway, employing PPARγ as an effector element. These evidence could offer perspectives for new therapeutic approaches for melanoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Abdel-Malek Z, Swope VB, Suzuki I, Akcali C, Harriger MD, Boyce ST, et al. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc Natl Acad Sci U S A. 1995;92:1789–93.CrossRefPubMedPubMedCentral Abdel-Malek Z, Swope VB, Suzuki I, Akcali C, Harriger MD, Boyce ST, et al. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc Natl Acad Sci U S A. 1995;92:1789–93.CrossRefPubMedPubMedCentral
2.
go back to reference García-Borrón JC, Abdel-Malek Z, Jiménez-Cervantes C. MC1R, the cAMP pathway, and the response to solar UV: extending the horizonbeyond pigmentation. Pigment Cell Melanoma Res. 2014;27:699–720.CrossRefPubMedPubMedCentral García-Borrón JC, Abdel-Malek Z, Jiménez-Cervantes C. MC1R, the cAMP pathway, and the response to solar UV: extending the horizonbeyond pigmentation. Pigment Cell Melanoma Res. 2014;27:699–720.CrossRefPubMedPubMedCentral
3.
go back to reference Swope VB, Abdel-Malek ZA. Significance of the Melanocortin 1 and Endothelin B receptors in melanocyte homeostasis and prevention of sun-induced Genotoxicity. Front Genet. 2016; doi: 10.3389/fgene.2016.00146. Swope VB, Abdel-Malek ZA. Significance of the Melanocortin 1 and Endothelin B receptors in melanocyte homeostasis and prevention of sun-induced Genotoxicity. Front Genet. 2016; doi: 10.​3389/​fgene.​2016.​00146.
5.
go back to reference Buscà R, Ballotti R, Cyclic AMP. A key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000;13:60–9.CrossRefPubMed Buscà R, Ballotti R, Cyclic AMP. A key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000;13:60–9.CrossRefPubMed
6.
go back to reference Cheli Y, Ohanna M, Ballotti R, Bertolotto C. Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res. 2010;23:27–40.CrossRefPubMed Cheli Y, Ohanna M, Ballotti R, Bertolotto C. Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res. 2010;23:27–40.CrossRefPubMed
7.
go back to reference Maresca V, Flori E, Camera E, Bellei B, Aspite N, Ludovici M, et al. Linking αMSH with PPARγ in B16-F10 melanoma. Pigment Cell Melanoma Res. 2013;26:113–27.CrossRefPubMed Maresca V, Flori E, Camera E, Bellei B, Aspite N, Ludovici M, et al. Linking αMSH with PPARγ in B16-F10 melanoma. Pigment Cell Melanoma Res. 2013;26:113–27.CrossRefPubMed
8.
go back to reference Bertolotto C, Bille K, Ortonne JP, Ballotti R. Regulation of tyrosinase gene expression by cAMP in B16 melanoma cells involves two CATGTG motifs surrounding the TATA box: implication of the microphthalmia gene product. J Cell Biol. 1996;134:747–55.CrossRefPubMed Bertolotto C, Bille K, Ortonne JP, Ballotti R. Regulation of tyrosinase gene expression by cAMP in B16 melanoma cells involves two CATGTG motifs surrounding the TATA box: implication of the microphthalmia gene product. J Cell Biol. 1996;134:747–55.CrossRefPubMed
9.
go back to reference Derosa G, Sahebkar A, Maffioli P. The role of various peroxisome proliferator-activated receptors and their ligands in clinical practice. J Cell Physiol. 2017; doi: 10.1002/jcp.25804. Derosa G, Sahebkar A, Maffioli P. The role of various peroxisome proliferator-activated receptors and their ligands in clinical practice. J Cell Physiol. 2017; doi: 10.​1002/​jcp.​25804.
10.
go back to reference Keshamouni VG, Reddy RC, Arenberg DA, Joel B, Thannickal VJ, Kalemkerian GP, et al. Peroxisome proliferator-activated receptor-gamma activation inhibits tumor progression in non-small-cell lung cancer. Oncogene. 2004;23:100–8.CrossRefPubMed Keshamouni VG, Reddy RC, Arenberg DA, Joel B, Thannickal VJ, Kalemkerian GP, et al. Peroxisome proliferator-activated receptor-gamma activation inhibits tumor progression in non-small-cell lung cancer. Oncogene. 2004;23:100–8.CrossRefPubMed
11.
go back to reference Lin CF, Young KC, Bai CH, BC Y, Ma CT, Chien YC, et al. Rosiglitazone regulates anti-inflammation and growth inhibition via PTEN. Biomed Res Int. 2014;787924 doi: 10.1155/2014/787924. Lin CF, Young KC, Bai CH, BC Y, Ma CT, Chien YC, et al. Rosiglitazone regulates anti-inflammation and growth inhibition via PTEN. Biomed Res Int. 2014;787924 doi: 10.​1155/​2014/​787924.
12.
go back to reference Zhao H, Gu H, Zhang H, Li JH, Zhao WE. PPARγ-dependent pathway in the growth-inhibitory effects of K562 cells by carotenoids in combination with rosiglitazone. Biochim Biophys Acta. 2014;1840:545–55.CrossRefPubMed Zhao H, Gu H, Zhang H, Li JH, Zhao WE. PPARγ-dependent pathway in the growth-inhibitory effects of K562 cells by carotenoids in combination with rosiglitazone. Biochim Biophys Acta. 2014;1840:545–55.CrossRefPubMed
13.
go back to reference Halaban R, Lerner AB. The dual effect of melanocyte-stimulating hormone (αMSH) on the growth of cultured mouse melanoma cells. Exp Cell Res. 1977;108:111–7.CrossRefPubMed Halaban R, Lerner AB. The dual effect of melanocyte-stimulating hormone (αMSH) on the growth of cultured mouse melanoma cells. Exp Cell Res. 1977;108:111–7.CrossRefPubMed
14.
go back to reference Pawelek JM. Evidence suggesting that a cyclic AMP-dependent protein kinase is a positive regulator of proliferation in Cloudman S91 melanoma cells. J Cell Physiol. 1979;98:619–25.CrossRefPubMed Pawelek JM. Evidence suggesting that a cyclic AMP-dependent protein kinase is a positive regulator of proliferation in Cloudman S91 melanoma cells. J Cell Physiol. 1979;98:619–25.CrossRefPubMed
15.
go back to reference Bock F, Onderka J, Braun G, Schneider AC, Bachmann BO, Cursiefen C. Identification of novel endogenous anti(lymph)angiogenic factors in the aqueous humor. Invest Ophthalmol Vis Sci. 2016;57:6554–60.CrossRefPubMed Bock F, Onderka J, Braun G, Schneider AC, Bachmann BO, Cursiefen C. Identification of novel endogenous anti(lymph)angiogenic factors in the aqueous humor. Invest Ophthalmol Vis Sci. 2016;57:6554–60.CrossRefPubMed
16.
go back to reference Im S, Moro O, Peng F, Medrano EE, Cornelius J, Babcock G, et al. Activation of the cyclic AMP pathway by alpha-melanotropin mediates the response of human melanocytes to ultraviolet B radiation. Cancer Res. 1998;58:47–54.PubMed Im S, Moro O, Peng F, Medrano EE, Cornelius J, Babcock G, et al. Activation of the cyclic AMP pathway by alpha-melanotropin mediates the response of human melanocytes to ultraviolet B radiation. Cancer Res. 1998;58:47–54.PubMed
17.
go back to reference Novosadova EV, Manuilova ES, Arsenyeva EL, Andreeva LA, Lebedeva OS, Grivennikov IA, et al. Investigation of the effect of α-melanocyte-stimulating hormone on proliferation and early stages of differentiation of human induced pluripotent stem cells. Dokl Biochem Biophys. 2016;467:141–4.CrossRefPubMed Novosadova EV, Manuilova ES, Arsenyeva EL, Andreeva LA, Lebedeva OS, Grivennikov IA, et al. Investigation of the effect of α-melanocyte-stimulating hormone on proliferation and early stages of differentiation of human induced pluripotent stem cells. Dokl Biochem Biophys. 2016;467:141–4.CrossRefPubMed
18.
go back to reference Abdel-Malek Z, Swope VB, Pallas J, Krug K, Nordlund JJ. Mitogenic, melanogenic, and cAMP responses of cultured neonatal human melanocytes to commonly used mitogens. J Cell Physiol. 1992;150:416–25.CrossRefPubMed Abdel-Malek Z, Swope VB, Pallas J, Krug K, Nordlund JJ. Mitogenic, melanogenic, and cAMP responses of cultured neonatal human melanocytes to commonly used mitogens. J Cell Physiol. 1992;150:416–25.CrossRefPubMed
19.
go back to reference Eisinger M, Marko O. Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci U S A. 1982;79:2018–22.CrossRefPubMedPubMedCentral Eisinger M, Marko O. Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci U S A. 1982;79:2018–22.CrossRefPubMedPubMedCentral
20.
go back to reference Halaban R, Ghosh S, Duray P, Kirkwood JM, Lerner AB. Human melanocytes cultured from nevi and melanomas. J Invest Dermatol. 1986 Jul;87(1):95–101.CrossRefPubMed Halaban R, Ghosh S, Duray P, Kirkwood JM, Lerner AB. Human melanocytes cultured from nevi and melanomas. J Invest Dermatol. 1986 Jul;87(1):95–101.CrossRefPubMed
21.
go back to reference Hochegger H, Takeda S, Hunt T. Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat Rev Mol Cell Biol. 2008;9:910–6.CrossRefPubMed Hochegger H, Takeda S, Hunt T. Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat Rev Mol Cell Biol. 2008;9:910–6.CrossRefPubMed
23.
go back to reference Chen K, Perez-Stable C, D'Ippolito G, Schiller PC, Roos BA, Howard GA. Human bone marrow-derived stem cell proliferation is inhibited by hepatocyte growth factor via increasing the cell cycle inhibitors p53, p21 and p27. Bone. 2011;49:1194–204.CrossRefPubMed Chen K, Perez-Stable C, D'Ippolito G, Schiller PC, Roos BA, Howard GA. Human bone marrow-derived stem cell proliferation is inhibited by hepatocyte growth factor via increasing the cell cycle inhibitors p53, p21 and p27. Bone. 2011;49:1194–204.CrossRefPubMed
24.
go back to reference Ilyin GP, Glaise D, Gilot D, Baffet G, Guguen-Guillouzo C. Regulation and role of p21 and p27 cyclin-dependent kinase inhibitors during hepatocyte differentiation and growth. Am J Physiol Gastrointest Liver Physiol. 2003 Jul;285(1):G115–27. Epub 2003 Mar 19 Ilyin GP, Glaise D, Gilot D, Baffet G, Guguen-Guillouzo C. Regulation and role of p21 and p27 cyclin-dependent kinase inhibitors during hepatocyte differentiation and growth. Am J Physiol Gastrointest Liver Physiol. 2003 Jul;285(1):G115–27. Epub 2003 Mar 19
25.
go back to reference Orlando S, Gallastegui E, Besson A, Abril G, Aligué R, Pujol MJ et al. p27Kip1 and p21Cip1 collaborate in the regulation of transcription by recruiting cyclin-Cdk complexes on the promoters of target genes. Nucleic Acids Res 2015 Aug 18;43(14):6860–6873. doi: 10.1093/nar/gkv593. Epub 2015 Jun 13. Orlando S, Gallastegui E, Besson A, Abril G, Aligué R, Pujol MJ et al. p27Kip1 and p21Cip1 collaborate in the regulation of transcription by recruiting cyclin-Cdk complexes on the promoters of target genes. Nucleic Acids Res 2015 Aug 18;43(14):6860–6873. doi: 10.​1093/​nar/​gkv593. Epub 2015 Jun 13.
26.
go back to reference Rusciano D, Lorenzoni P, Burger MM. Regulation of c-met expression in B16 murine melanoma cells by melanocyte stimulating hormone. J Cell Sci. 1999;112:623–30.PubMed Rusciano D, Lorenzoni P, Burger MM. Regulation of c-met expression in B16 murine melanoma cells by melanocyte stimulating hormone. J Cell Sci. 1999;112:623–30.PubMed
27.
go back to reference Kovacs D, Migliano E, Muscardin L, Silipo V, Catricalà C, Picardo M, et al. The role of Wnt/β-catenin signaling pathway in melanomam epithelial-to-mesenchymal-like switching: evidences from patients-derived cell lines. Oncotarget. 2016;7:43295–314.CrossRefPubMedPubMedCentral Kovacs D, Migliano E, Muscardin L, Silipo V, Catricalà C, Picardo M, et al. The role of Wnt/β-catenin signaling pathway in melanomam epithelial-to-mesenchymal-like switching: evidences from patients-derived cell lines. Oncotarget. 2016;7:43295–314.CrossRefPubMedPubMedCentral
28.
go back to reference Maresca V, Flori E, Briganti S, Mastrofrancesco A, Fabbri C, Mileo AM, et al. Correlation between melanogenic and catalase activity in in vitro human melanocytes: a synergic strategy against oxidative stress. Pigment Cell Melanoma Res. 2008;21:200–5.CrossRefPubMed Maresca V, Flori E, Briganti S, Mastrofrancesco A, Fabbri C, Mileo AM, et al. Correlation between melanogenic and catalase activity in in vitro human melanocytes: a synergic strategy against oxidative stress. Pigment Cell Melanoma Res. 2008;21:200–5.CrossRefPubMed
29.
go back to reference Leesnitzer LM, Parks DJ, Bledsoe RK, Cobb JE, Collins JL, Consler TG, et al. Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry. 2002;41:6640–50.CrossRefPubMed Leesnitzer LM, Parks DJ, Bledsoe RK, Cobb JE, Collins JL, Consler TG, et al. Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry. 2002;41:6640–50.CrossRefPubMed
30.
go back to reference Bae YS, Lee TG, Park JC, Hur JH, Kim Y, Heo K, et al. Identification of a compound that directly stimulates phospholipase C activity. Mol Pharmacol. 2003;63:1043–50.CrossRefPubMed Bae YS, Lee TG, Park JC, Hur JH, Kim Y, Heo K, et al. Identification of a compound that directly stimulates phospholipase C activity. Mol Pharmacol. 2003;63:1043–50.CrossRefPubMed
31.
go back to reference Rocchi S, Picard F, Vamecq J, Gelman L, Potier N, Zeyer D, et al. A unique PPARγ ligand with potent insulin-sensitizing yet weak adipogenic activity. Mol Cell. 2001;8:737–47.CrossRefPubMed Rocchi S, Picard F, Vamecq J, Gelman L, Potier N, Zeyer D, et al. A unique PPARγ ligand with potent insulin-sensitizing yet weak adipogenic activity. Mol Cell. 2001;8:737–47.CrossRefPubMed
32.
go back to reference Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002;35:605–23.CrossRefPubMed Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002;35:605–23.CrossRefPubMed
33.
go back to reference Mantovani G, Bondioni S, Lania AG, Rodolfo M, Peverelli E, Polentarutti N, et al. High expression of PKA regulatory subunit 1A protein is related to proliferation of human melanoma cells. Oncogene. 2008;27:1834–43.CrossRefPubMed Mantovani G, Bondioni S, Lania AG, Rodolfo M, Peverelli E, Polentarutti N, et al. High expression of PKA regulatory subunit 1A protein is related to proliferation of human melanoma cells. Oncogene. 2008;27:1834–43.CrossRefPubMed
34.
go back to reference Botton T, Puissant A, Bahadoran P, Annicotte JS, Fajas L, Ortonne JP, et al. Vitro and in vivo anti-melanoma effects of ciglitazone. J Invest Dermatol. 2009;129:1208–18.CrossRefPubMed Botton T, Puissant A, Bahadoran P, Annicotte JS, Fajas L, Ortonne JP, et al. Vitro and in vivo anti-melanoma effects of ciglitazone. J Invest Dermatol. 2009;129:1208–18.CrossRefPubMed
35.
go back to reference Serra D, Almeida LM, Dinis TC. Anti-inflammatory protection afforded by cyanidin-3-glucoside and resveratrol in human intestinal cells via Nrf2 and PPARγ: comparison with 5-aminosalicylic acid. Chem Biol Interact. 2016;260:102–9.CrossRefPubMed Serra D, Almeida LM, Dinis TC. Anti-inflammatory protection afforded by cyanidin-3-glucoside and resveratrol in human intestinal cells via Nrf2 and PPARγ: comparison with 5-aminosalicylic acid. Chem Biol Interact. 2016;260:102–9.CrossRefPubMed
36.
go back to reference Varga T, Czimmerer Z, Nagy LPPAR. Are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta. 2011;1812:1007–22.CrossRefPubMedPubMedCentral Varga T, Czimmerer Z, Nagy LPPAR. Are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta. 2011;1812:1007–22.CrossRefPubMedPubMedCentral
37.
go back to reference Grommes C, Landreth GE, Heneka MT. Antineoplastic effects of peroxisome proliferator-activated receptor-γ agonists. The. lancet Oncol. 2004;5:419–29.CrossRefPubMed Grommes C, Landreth GE, Heneka MT. Antineoplastic effects of peroxisome proliferator-activated receptor-γ agonists. The. lancet Oncol. 2004;5:419–29.CrossRefPubMed
38.
go back to reference Sikka S, Chen L, Sethi G, Kumar AP. Targeting PPARγ signaling cascade for prevention of treatment of prostate cancer. PPAR Res. 2012; doi: 10.1155/2012/968040. Sikka S, Chen L, Sethi G, Kumar AP. Targeting PPARγ signaling cascade for prevention of treatment of prostate cancer. PPAR Res. 2012; doi: 10.​1155/​2012/​968040.
39.
go back to reference Vella V, Nicolosi ML, Giuliano S, Bellomo M, Belfiore A, Malaguarnera R. PPARγ agonists as antineoplastic agent in cancers with dysregulated IGF axis. Front Endocrinol (Lausanne). 2017 Feb 22;8:31. doi: 10.3389/fendo.2017.00031. Vella V, Nicolosi ML, Giuliano S, Bellomo M, Belfiore A, Malaguarnera R. PPARγ agonists as antineoplastic agent in cancers with dysregulated IGF axis. Front Endocrinol (Lausanne). 2017 Feb 22;8:31. doi: 10.​3389/​fendo.​2017.​00031.
Metadata
Title
The α-melanocyte stimulating hormone/peroxisome proliferator activated receptor-γ pathway down-regulates proliferation in melanoma cell lines
Authors
Enrica Flori
Eleonora Rosati
Giorgia Cardinali
Daniela Kovacs
Barbara Bellei
Mauro Picardo
Vittoria Maresca
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2017
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-017-0611-4

Other articles of this Issue 1/2017

Journal of Experimental & Clinical Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine