Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2017

Open Access 01-12-2017 | Research

ICG-001 suppresses growth of gastric cancer cells and reduces chemoresistance of cancer stem cell-like population

Authors: Yi Liu, Hui Chen, Peiming Zheng, Yingxia Zheng, Qin Luo, Guohua Xie, Yanhui Ma, Lisong Shen

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

ICG-001, a small molecule, binds CREB-binding protein (CBP) to disrupt its interaction with β-catenin and inhibits CBP function as a co-activator of Wnt/β-catenin-mediated transcription. Given its ability to inhibit Wnt/β-catenin signaling pathway, ICG-001 has been used in some tumor types to exert its anticarcinogenic effect. Here, we examined ICG-001 and its potential role as a therapeutic in gastric cancer (GC).

Methods

The gastric cancer cell lines SGC-7901, MGC-803, BGC-823 and MKN-45 were used in vitro and in vivo. The abilities of cell proliferation, tumor sphere formation, metastasis, tumorgenesis and chemoresistance to chemotherapy drugs in vitro were evaluated by MTT assay, colony formation assay, flow cytometry, migration and invasion assay, and tumor spheres culture. The in vivo experiments were performed using a subcutaneous transplantation tumor model in athymic nude mice. Alterations at RNA and protein levels were followed by qRT-PCR, western blot, coimmunoprecipitations and immunofluorescence assay.

Results

In this study, we showed that ICG-001 significantly inhibited growth and metastasis of multiple GC cell lines, induced cell apoptosis, and augmented in vitro tumor spheres suppression when used in combination with chemotherapy drugs probably through robustly blocking association of β-catenin with CBP and N-cadherin, but promoting association of β-catenin with P300 and E-cadherin, instead of altering the distribution and expression of β-catenin.

Conclusions

Our findings suggest that ICG-001 suppresses GC cell line growth, metastasis and reduces its stem cell-like properties and chemoresistance, indicating that ICG-001 is a potentially useful small molecule therapeutic for GC.
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed
2.
go back to reference Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.CrossRefPubMed Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.CrossRefPubMed
3.
4.
go back to reference White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology. 2012;142(2):219–32.CrossRefPubMed White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology. 2012;142(2):219–32.CrossRefPubMed
5.
go back to reference Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, et al. A small molecule inhibitor of β-catenin /CREB-binding protein transcription. Proc Natl Acad Sci U S A. 2004;101:12682–7.CrossRefPubMedPubMedCentral Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, et al. A small molecule inhibitor of β-catenin /CREB-binding protein transcription. Proc Natl Acad Sci U S A. 2004;101:12682–7.CrossRefPubMedPubMedCentral
6.
go back to reference Henderson WR, Chi EY, Ye X, Nguyen C, Tien Y, Zhou B, et al. Inhibition of Wnt/beta-catenin/ CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A. 2010;107:14309–14.CrossRefPubMedPubMedCentral Henderson WR, Chi EY, Ye X, Nguyen C, Tien Y, Zhou B, et al. Inhibition of Wnt/beta-catenin/ CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A. 2010;107:14309–14.CrossRefPubMedPubMedCentral
7.
go back to reference Hao S, He W, Li Y, Ding H, Hou Y, Nie J, et al. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis. J Am Soc Nephrol. 2011;22:1642–53.CrossRefPubMedPubMedCentral Hao S, He W, Li Y, Ding H, Hou Y, Nie J, et al. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis. J Am Soc Nephrol. 2011;22:1642–53.CrossRefPubMedPubMedCentral
8.
go back to reference Gang EJ, Hsieh Y-T, Pham J, Zhao Y, Nguyen C, Huantes S, et al. Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene. 2014;33(17):2169–78.CrossRefPubMed Gang EJ, Hsieh Y-T, Pham J, Zhao Y, Nguyen C, Huantes S, et al. Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene. 2014;33(17):2169–78.CrossRefPubMed
9.
go back to reference Sasaki T, Hwang H, Nguyen C, Kloner R a, Kahn M. The small molecule Wnt signaling modulator ICG-001 improves contractile function in chronically Infarcted rat myocardium. PLoS One. 2013;8:e75010.CrossRefPubMedPubMedCentral Sasaki T, Hwang H, Nguyen C, Kloner R a, Kahn M. The small molecule Wnt signaling modulator ICG-001 improves contractile function in chronically Infarcted rat myocardium. PLoS One. 2013;8:e75010.CrossRefPubMedPubMedCentral
10.
go back to reference Beyer C, Reichert H, Akan H, Mallano T, Schramm A, Dees C, et al. Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis. Ann Rheum Dis. 2013;72:1255–8.CrossRefPubMed Beyer C, Reichert H, Akan H, Mallano T, Schramm A, Dees C, et al. Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis. Ann Rheum Dis. 2013;72:1255–8.CrossRefPubMed
11.
go back to reference Wend P, Fang L, Zhu Q, Schipper JH, Loddenkemper C, Kosel F, et al. Wnt/β-catenin signaling induces MLL to create epigenetic changes in salivary gland tumours. EMBO J. 2013;32:1977–89.CrossRefPubMedPubMedCentral Wend P, Fang L, Zhu Q, Schipper JH, Loddenkemper C, Kosel F, et al. Wnt/β-catenin signaling induces MLL to create epigenetic changes in salivary gland tumours. EMBO J. 2013;32:1977–89.CrossRefPubMedPubMedCentral
12.
go back to reference Arensman MD, Telesca D, Lay AR, et al. The CREB binding protein inhibitor ICG-001 suppresses pancreatic cancer growth. Mol Cancer Ther. 2014;13(10):2303–14.CrossRefPubMedPubMedCentral Arensman MD, Telesca D, Lay AR, et al. The CREB binding protein inhibitor ICG-001 suppresses pancreatic cancer growth. Mol Cancer Ther. 2014;13(10):2303–14.CrossRefPubMedPubMedCentral
13.
go back to reference Chen H, Xie GH, Wang WW, Yuan XL, Xing WM, Liu HJ, et al. Epigenetically downregulated Semaphorin 3E contributes to gastric cancer. Oncotarget. 2015;6:20449–65.CrossRefPubMedPubMedCentral Chen H, Xie GH, Wang WW, Yuan XL, Xing WM, Liu HJ, et al. Epigenetically downregulated Semaphorin 3E contributes to gastric cancer. Oncotarget. 2015;6:20449–65.CrossRefPubMedPubMedCentral
14.
go back to reference Yuan X, Yu L, Li J, Xie G, Rong T, Zhang L, et al. ATF3 Suppresses metastasis of bladder cancer by regulating gelsolin-mediated remodeling of the actin cytoskeleton. Cancer Res. 2013;73:3625–37.CrossRefPubMed Yuan X, Yu L, Li J, Xie G, Rong T, Zhang L, et al. ATF3 Suppresses metastasis of bladder cancer by regulating gelsolin-mediated remodeling of the actin cytoskeleton. Cancer Res. 2013;73:3625–37.CrossRefPubMed
15.
go back to reference Yunlong Ma, Bin Zhu, Xiaoguang Liu, et al. Inhibition of oleandrin on the proliferation show and invasion of osteosarcoma cells in vitro by suppressing Wnt/β-catenin signaling pathway. J Exp Clin Cancer Res. 2015;34:115. Yunlong Ma, Bin Zhu, Xiaoguang Liu, et al. Inhibition of oleandrin on the proliferation show and invasion of osteosarcoma cells in vitro by suppressing Wnt/β-catenin signaling pathway. J Exp Clin Cancer Res. 2015;34:115.
16.
go back to reference Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res. 2010;16:3153–62.CrossRefPubMed Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res. 2010;16:3153–62.CrossRefPubMed
18.
go back to reference Yao H, Ashihara E, Maekawa T. Targeting the Wnt/β-catenin signaling pathway in human cancers. Expert Opin Ther Targets. 2011;22(2):823–32. Yao H, Ashihara E, Maekawa T. Targeting the Wnt/β-catenin signaling pathway in human cancers. Expert Opin Ther Targets. 2011;22(2):823–32.
19.
go back to reference Shuka G, Khera HK, Srivastava AK, et al. Therapeutic potential, challenges and future perspective of cancer stem cells in translational oncology: a critical review. Curr Stem Cell Res Ther. 2017;12(3):207–24.CrossRef Shuka G, Khera HK, Srivastava AK, et al. Therapeutic potential, challenges and future perspective of cancer stem cells in translational oncology: a critical review. Curr Stem Cell Res Ther. 2017;12(3):207–24.CrossRef
20.
go back to reference Dawood S, Austin L, Cristofanilli M. Cancer stem cells: implications for cancer therapy. Oncology. 2014;28(12):1101–7.PubMed Dawood S, Austin L, Cristofanilli M. Cancer stem cells: implications for cancer therapy. Oncology. 2014;28(12):1101–7.PubMed
21.
go back to reference Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMed Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMed
22.
go back to reference O’Brien CA, Kreso A, Dick JE. Cancer stem cells in solid tumors:anoverview Semin. Radiat Oncol. 2009;19:71–7.CrossRef O’Brien CA, Kreso A, Dick JE. Cancer stem cells in solid tumors:anoverview Semin. Radiat Oncol. 2009;19:71–7.CrossRef
23.
go back to reference Singh SK, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMed Singh SK, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMed
24.
go back to reference Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E. Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res. 2007;67:8671–81.CrossRefPubMed Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E. Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res. 2007;67:8671–81.CrossRefPubMed
25.
27.
go back to reference Lei D, Wang H, Leya H, et al. CD44 Is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14:6751–60.CrossRef Lei D, Wang H, Leya H, et al. CD44 Is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14:6751–60.CrossRef
28.
go back to reference Takaishi S, Okumura T, Shuiping T, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009;27(5):1006–20.CrossRefPubMedPubMedCentral Takaishi S, Okumura T, Shuiping T, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009;27(5):1006–20.CrossRefPubMedPubMedCentral
29.
go back to reference Vlashi E, Pajonk F. Cancer stem cells, cancer cell plasticity and radiation therapy. Semin Cancer Biol. 2015;31:28–35.CrossRefPubMed Vlashi E, Pajonk F. Cancer stem cells, cancer cell plasticity and radiation therapy. Semin Cancer Biol. 2015;31:28–35.CrossRefPubMed
30.
go back to reference Morrison, R. et al. Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J. Oncol. 2011,941876. Morrison, R. et al. Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J. Oncol. 2011,941876.
31.
go back to reference Szakács G, Annereau J-P, Lababidi S, et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell. 2004;6(2):129–37.CrossRefPubMed Szakács G, Annereau J-P, Lababidi S, et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell. 2004;6(2):129–37.CrossRefPubMed
32.
go back to reference Lukaszewicz AI, McMillan MK, Kahn M. Small molecules and stem cells potency and lineage commitment: the new quest for the fountain of youth. J Med Chem. 2010;53:3439–53.CrossRefPubMedPubMedCentral Lukaszewicz AI, McMillan MK, Kahn M. Small molecules and stem cells potency and lineage commitment: the new quest for the fountain of youth. J Med Chem. 2010;53:3439–53.CrossRefPubMedPubMedCentral
33.
go back to reference Kahn M. Symmetric division versus asymmetric division: a tale of two coactivators. Future Med Chem. 2011;3:1745–63.CrossRefPubMed Kahn M. Symmetric division versus asymmetric division: a tale of two coactivators. Future Med Chem. 2011;3:1745–63.CrossRefPubMed
35.
go back to reference Gao F, Alwhaibi A, Sabbineni H, et al. Suppression of Akt1-β-catenin pathway in advanced prostate cancer promotes TGFβ1-mediated epithelial to mesenchymal transition and metastasis. Cancer Lett. 2017;402:177–89.CrossRefPubMed Gao F, Alwhaibi A, Sabbineni H, et al. Suppression of Akt1-β-catenin pathway in advanced prostate cancer promotes TGFβ1-mediated epithelial to mesenchymal transition and metastasis. Cancer Lett. 2017;402:177–89.CrossRefPubMed
Metadata
Title
ICG-001 suppresses growth of gastric cancer cells and reduces chemoresistance of cancer stem cell-like population
Authors
Yi Liu
Hui Chen
Peiming Zheng
Yingxia Zheng
Qin Luo
Guohua Xie
Yanhui Ma
Lisong Shen
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2017
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-017-0595-0

Other articles of this Issue 1/2017

Journal of Experimental & Clinical Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine