Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2017

Open Access 01-12-2017 | Research

High performance of targeted next generation sequencing on variance detection in clinical tumor specimens in comparison with current conventional methods

Authors: Dan Su, Dadong Zhang, Kaiyan Chen, Jing Lu, Junzhou Wu, Xinkai Cao, Lisha Ying, Qihuang Jin, Yizhou Ye, Zhenghua Xie, Lei Xiong, Weimin Mao, Fugen Li

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

Next generation sequencing (NGS) is being increasingly applied for assisting cancer molecular diagnosis. However, it is still needed to validate NGS accuracy on detection of DNA alternations based on a large number of clinical samples, especially for DNA rearrangements and copy number variations (CNVs). This study is to set up basic parameters of targeted NGS for clinical diagnosis and to understand advantage of targeted NGS in comparison with the conventional methods of molecular diagnosis.

Methods

Genomic DNA from 1000 Genomes Project and DNA from cancer cell lines have been used to establish the basic parameters for targeted NGS. The following confirmation was conducted by clinical samples. The multiple variants tested by amplification-refractory mutation system (ARMS), fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) were evaluated by targeted NGS to determine the sensitivity. Furthermore, the multiple variants detected by targeted NGS were confirmed by current conventional methods to elucidate the specificity.

Results

At sequencing depth of 500×, the maximal sensitivities on detecting single nucletic variances (SNVs) and small insertions/deletions (Indels) can reach 99% and 98.7% respectively, and in 20% of cancer cells, CNV detection can reach to the maximal level. The following confirmation of the sensitivity and specificity was conducted by a large cohort of clinical samples. For SNV and indel detection in clinical samples, targeted NGS can identify all hotspot mutations with 100% sensitivity and specificity. On ALK fusion detection, about 86% IHC-identified cases could be identified by targeted NGS and all ALK fusion detected by targeted NGS were confirmed by IHC. For HER2-amplification, 14 HER2-amplification cases identified by target NGS were all confirmed by FISH and about 93.3% of Her-2 IHC (3+) cases were identified by targeted NGS. Finally, the targeted NGS platform developed here has accurately detected EGFR hotspot mutations in 215 NSCLC patients.

Conclusions

DNA from cancer cell lines is better than standard DNA as a reference to establish basic parameters for targeted NGS. Comparison of the conventional methods using a large cohort of patient samples confirmed the high preformance of targeted NGS on detecting DNA alterations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lopez JS, Banerji U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nature reviews. Clin Oncol. 2017;14(1):57–6. Lopez JS, Banerji U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nature reviews. Clin Oncol. 2017;14(1):57–6.
2.
go back to reference Riely GJ, Pao W, Combining EGFR. Targeted therapy with chemotherapy in pancreatic cancer: is timing important? Cancer Biol Ther. 2005;4(10):1096–7.CrossRefPubMed Riely GJ, Pao W, Combining EGFR. Targeted therapy with chemotherapy in pancreatic cancer: is timing important? Cancer Biol Ther. 2005;4(10):1096–7.CrossRefPubMed
3.
go back to reference Stewart EL, Tan SZ, Liu G, Tsao MS. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review. Transl Lung Cancer Res. 2015;4(1):67–81.PubMedPubMedCentral Stewart EL, Tan SZ, Liu G, Tsao MS. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review. Transl Lung Cancer Res. 2015;4(1):67–81.PubMedPubMedCentral
4.
go back to reference Diaz LA, Jr., Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 2014;32(6):579–586. Diaz LA, Jr., Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 2014;32(6):579–586.
5.
go back to reference Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31(11):1023–31.CrossRefPubMed Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31(11):1023–31.CrossRefPubMed
7.
go back to reference Shrager J, Tenenbaum JM. Rapid learning for precision oncology. Nat Rev Clin Oncol. 2014;11(2):109–18.CrossRefPubMed Shrager J, Tenenbaum JM. Rapid learning for precision oncology. Nat Rev Clin Oncol. 2014;11(2):109–18.CrossRefPubMed
8.
go back to reference Fisher S, Barry A, Abreu J, Minie B, Nolan J, Delorey TM, et al. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol. 2011;12(1):R1.CrossRefPubMedPubMedCentral Fisher S, Barry A, Abreu J, Minie B, Nolan J, Delorey TM, et al. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol. 2011;12(1):R1.CrossRefPubMedPubMedCentral
9.
go back to reference Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, et al. The UCSC table browser data retrieval tool. Nucleic Acids Res. 2004;32(Database issue):D493–6.CrossRefPubMedPubMedCentral Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, et al. The UCSC table browser data retrieval tool. Nucleic Acids Res. 2004;32(Database issue):D493–6.CrossRefPubMedPubMedCentral
10.
go back to reference Shi Y, JS A, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. 2014;9(2):154–62.CrossRefPubMedPubMedCentral Shi Y, JS A, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. 2014;9(2):154–62.CrossRefPubMedPubMedCentral
11.
go back to reference McLeer-Florin A, Moro-Sibilot D, Melis A, Salameire D, Lefebvre C, Ceccaldi F, et al. Dual IHC and FISH testing for ALK gene rearrangement in lung adenocarcinomas in a routine practice: a French study. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2012;7(2):348–54.CrossRef McLeer-Florin A, Moro-Sibilot D, Melis A, Salameire D, Lefebvre C, Ceccaldi F, et al. Dual IHC and FISH testing for ALK gene rearrangement in lung adenocarcinomas in a routine practice: a French study. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2012;7(2):348–54.CrossRef
12.
go back to reference Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12.CrossRefPubMed Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12.CrossRefPubMed
13.
go back to reference Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011;12(2):175–80.CrossRefPubMed Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011;12(2):175–80.CrossRefPubMed
14.
go back to reference Swanton C, Govindan R. Clinical implications of genomic discoveries in lung cancer. N Engl J Med. 2016;374(19):1864–73.CrossRefPubMed Swanton C, Govindan R. Clinical implications of genomic discoveries in lung cancer. N Engl J Med. 2016;374(19):1864–73.CrossRefPubMed
15.
go back to reference Pirker R, Herth FJ, Kerr KM, Filipits M, Taron M, Gandara D, et al. Consensus for EGFR mutation testing in non-small cell lung cancer. J Thorac Oncol. 2010;5:1706–13.CrossRefPubMed Pirker R, Herth FJ, Kerr KM, Filipits M, Taron M, Gandara D, et al. Consensus for EGFR mutation testing in non-small cell lung cancer. J Thorac Oncol. 2010;5:1706–13.CrossRefPubMed
16.
17.
go back to reference Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. 2007;98(12):1817–24.CrossRefPubMed Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. 2007;98(12):1817–24.CrossRefPubMed
18.
go back to reference Chen D, Song Z, Cheng G. Clinical efficacy of first-generation EGFR-TKIs in patients with advanced non-small-cell lung cancer harboring EGFR exon 20 mutations. Onco Targets Ther. 2016;9:4181.CrossRefPubMedPubMedCentral Chen D, Song Z, Cheng G. Clinical efficacy of first-generation EGFR-TKIs in patients with advanced non-small-cell lung cancer harboring EGFR exon 20 mutations. Onco Targets Ther. 2016;9:4181.CrossRefPubMedPubMedCentral
19.
go back to reference Naidoo J, Sima CS, Rodriguez K, Busby N, Nafa K, Ladanyi M, et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: clinical outcomes and response to erlotinib. Cancer. 2015;121(18):3212–20.CrossRefPubMedPubMedCentral Naidoo J, Sima CS, Rodriguez K, Busby N, Nafa K, Ladanyi M, et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: clinical outcomes and response to erlotinib. Cancer. 2015;121(18):3212–20.CrossRefPubMedPubMedCentral
20.
go back to reference Greulich H, Chen TH, Feng W, Janne PA, Alvarez JV, Zappaterra M, et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med. 2005;2(11):e313.CrossRefPubMedPubMedCentral Greulich H, Chen TH, Feng W, Janne PA, Alvarez JV, Zappaterra M, et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med. 2005;2(11):e313.CrossRefPubMedPubMedCentral
21.
go back to reference Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6.CrossRefPubMed Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6.CrossRefPubMed
22.
go back to reference Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131(6):1190–03.CrossRefPubMed Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131(6):1190–03.CrossRefPubMed
23.
go back to reference Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 2011;12(11):1004–12.CrossRefPubMedPubMedCentral Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 2011;12(11):1004–12.CrossRefPubMedPubMedCentral
24.
go back to reference Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–94.CrossRefPubMed Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–94.CrossRefPubMed
25.
go back to reference Yoshida T, Oya Y, Tanaka K, Shimizu J, Horio Y, Kuroda H, et al. Differential Crizotinib response duration among ALK fusion variants in ALK-positive non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016;34(28):3383–9.CrossRef Yoshida T, Oya Y, Tanaka K, Shimizu J, Horio Y, Kuroda H, et al. Differential Crizotinib response duration among ALK fusion variants in ALK-positive non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016;34(28):3383–9.CrossRef
26.
go back to reference Cabillic F, Gros A, Dugay F, Begueret H, Mesturoux L, Chiforeanu DC, et al. Parallel FISH and immunohistochemical studies of ALK status in 3244 non-small-cell lung cancers reveal major discordances. J Thorac Oncol. 2014;9(3):295–6.CrossRefPubMed Cabillic F, Gros A, Dugay F, Begueret H, Mesturoux L, Chiforeanu DC, et al. Parallel FISH and immunohistochemical studies of ALK status in 3244 non-small-cell lung cancers reveal major discordances. J Thorac Oncol. 2014;9(3):295–6.CrossRefPubMed
27.
go back to reference Ali G, Proietti A, Pelliccioni S, Niccoli C, Lupi C, Sensi E, et al. ALK rearrangement in a large series of consecutive non-small cell lung cancers: comparison between a new immunohistochemical approach and fluorescence in situ hybridization for the screening of patients eligible for crizotinib treatment. Arch Pathol Lab Med. 2014;138(11):1449–58.CrossRefPubMed Ali G, Proietti A, Pelliccioni S, Niccoli C, Lupi C, Sensi E, et al. ALK rearrangement in a large series of consecutive non-small cell lung cancers: comparison between a new immunohistochemical approach and fluorescence in situ hybridization for the screening of patients eligible for crizotinib treatment. Arch Pathol Lab Med. 2014;138(11):1449–58.CrossRefPubMed
28.
go back to reference Wallander ML, Geiersbach KB, Tripp SR, Layfield LJ. Comparison of reverse transcription-polymerase chain reaction, immunohistochemistry, and fluorescence in situ hybridization methodologies for detection of echinoderm microtubule-associated proteinlike 4-anaplastic lymphoma kinase fusion-positive non-small cell lung carcinoma: implications for optimal clinical testing. Arch Pathol Lab Med. 2012;136(7):796–3.CrossRefPubMed Wallander ML, Geiersbach KB, Tripp SR, Layfield LJ. Comparison of reverse transcription-polymerase chain reaction, immunohistochemistry, and fluorescence in situ hybridization methodologies for detection of echinoderm microtubule-associated proteinlike 4-anaplastic lymphoma kinase fusion-positive non-small cell lung carcinoma: implications for optimal clinical testing. Arch Pathol Lab Med. 2012;136(7):796–3.CrossRefPubMed
29.
go back to reference Yu Y, Ding Z, Zhu L, Teng H, Frequencies LS. Of ALK rearrangements in lung adenocarcinoma subtypes: a study of 2299 Chinese cases. Spring. 2016;5(1):894.CrossRef Yu Y, Ding Z, Zhu L, Teng H, Frequencies LS. Of ALK rearrangements in lung adenocarcinoma subtypes: a study of 2299 Chinese cases. Spring. 2016;5(1):894.CrossRef
30.
go back to reference Wesola M, Jelen MA. Comparison of IHC and FISH cytogenetic methods in the evaluation of HER2 status in breast cancer. Adv Clin Exp Med. 2015;24(5):899–3.CrossRefPubMed Wesola M, Jelen MA. Comparison of IHC and FISH cytogenetic methods in the evaluation of HER2 status in breast cancer. Adv Clin Exp Med. 2015;24(5):899–3.CrossRefPubMed
31.
go back to reference Pauletti G, Dandekar S, Rong H, Ramos L, Peng H, Seshadri R, et al. Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol. 2000;18(21):3651–64.CrossRefPubMed Pauletti G, Dandekar S, Rong H, Ramos L, Peng H, Seshadri R, et al. Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol. 2000;18(21):3651–64.CrossRefPubMed
Metadata
Title
High performance of targeted next generation sequencing on variance detection in clinical tumor specimens in comparison with current conventional methods
Authors
Dan Su
Dadong Zhang
Kaiyan Chen
Jing Lu
Junzhou Wu
Xinkai Cao
Lisha Ying
Qihuang Jin
Yizhou Ye
Zhenghua Xie
Lei Xiong
Weimin Mao
Fugen Li
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2017
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-017-0591-4

Other articles of this Issue 1/2017

Journal of Experimental & Clinical Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine