Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2017

Open Access 01-12-2017 | Research

FOXM1 expression is significantly associated with chemotherapy resistance and adverse prognosis in non-serous epithelial ovarian cancer patients

Authors: Renata A. Tassi, Paola Todeschini, Eric R. Siegel, Stefano Calza, Paolo Cappella, Laura Ardighieri, Moris Cadei, Mattia Bugatti, Chiara Romani, Elisabetta Bandiera, Laura Zanotti, Laura Tassone, Donatella Guarino, Concetta Santonocito, Ettore D. Capoluongo, Luca Beltrame, Eugenio Erba, Sergio Marchini, Maurizio D’Incalci, Carla Donzelli, Alessandro D. Santin, Sergio Pecorelli, Enrico Sartori, Eliana Bignotti, Franco Odicino, Antonella Ravaggi

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

Epithelial ovarian cancer (EOC) is a spectrum of different diseases, which makes their treatment a challenge. Forkhead box M1 (FOXM1) is an oncogene aberrantly expressed in many solid cancers including serous EOC, but its role in non-serous EOCs remains undefined. We examined FOXM1 expression and its correlation to prognosis across the three major EOC subtypes, and its role in tumorigenesis and chemo-resistance in vitro.

Methods

Gene signatures were generated by microarray for 14 clear-cell and 26 endometrioid EOCs, and 15 normal endometrium snap-frozen biopsies. Validation of FOXM1 expression was performed by RT–qPCR and immunohistochemistry in the same samples and additionally in 50 high-grade serous EOCs and in their most adequate normal controls (10 luminal fallopian tube and 20 ovarian surface epithelial brushings). Correlations of FOXM1 expression to clinic-pathological parameters and patients’ prognosis were evaluated by Kaplan-Meier and Cox proportional-hazards analyses. OVCAR-3 and two novel deeply characterized EOC cell lines (EOC-CC1 and OSPC2, with clear-cell and serous subtype, respectively) were employed for in vitro studies. Effects of FOXM1 inhibition by transient siRNA transfection were evaluated on cell-proliferation, cell-cycle, colony formation, invasion, and response to conventional first- and second-line anticancer agents, and to the PARP-inhibitor olaparib. Gene signatures of FOXM1-silenced cell lines were generated by microarray and confirmed by RT-qPCR.

Results

A significant FOXM1 mRNA up-regulation was found in EOCs compared to normal controls. FOXM1 protein overexpression significantly correlated to serous histology (p = 0.001) and advanced FIGO stage (p = 0.004). Multivariate analyses confirmed FOXM1 protein overexpression as an independent indicator of worse disease specific survival in non-serous EOCs, and of shorter time to progression in platinum-resistant cases. FOXM1 downregulation in EOC cell lines inhibited cell growth and clonogenicity, and promoted the cytotoxic effects of platinum compounds, doxorubicin hydrochloride and olaparib. Upon FOXM1 knock-down in EOC-CC1 and OSPC2 cells, microarray and RT-qPCR analyses revealed the deregulation of several common and other unique subtype-specific FOXM1 putative targets involved in cell cycle, metastasis, DNA repair and drug response.

Conclusions

FOXM1 is up-regulated in all three major EOCs subtypes, and is a prognostic biomarker and a potential combinatorial therapeutic target in platinum resistant disease, irrespective of tumor histology.
Appendix
Available only for authorised users
Literature
2.
go back to reference DiSaia PJ, Creasman WT. Epithelial Ovarian Cancer. Clinical Gynecologic Oncology. St. Louis: Mosby Year Book, Inc; 2002. p. 185–206.CrossRef DiSaia PJ, Creasman WT. Epithelial Ovarian Cancer. Clinical Gynecologic Oncology. St. Louis: Mosby Year Book, Inc; 2002. p. 185–206.CrossRef
3.
go back to reference Prat J. New insights into ovarian cancer pathology. Ann Oncol. 2012;23(Suppl 10:x111-7):PMID: 22987944. Prat J. New insights into ovarian cancer pathology. Ann Oncol. 2012;23(Suppl 10:x111-7):PMID: 22987944.
4.
go back to reference Köbel M, Kalloger SE, Boyd N, McKinney S, Mehl E, Palmer C, et al. Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS Med. 2008;5(12):e232.CrossRefPubMedPubMedCentral Köbel M, Kalloger SE, Boyd N, McKinney S, Mehl E, Palmer C, et al. Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS Med. 2008;5(12):e232.CrossRefPubMedPubMedCentral
5.
go back to reference Nik NN, Vang R, Shih IM, Kurman RJ. Origin and pathogenesis of pelvic (ovarian, tubal, and primary peritoneal) serous carcinoma. Annu Rev Pathol. 2014;9:27–45.CrossRefPubMed Nik NN, Vang R, Shih IM, Kurman RJ. Origin and pathogenesis of pelvic (ovarian, tubal, and primary peritoneal) serous carcinoma. Annu Rev Pathol. 2014;9:27–45.CrossRefPubMed
6.
go back to reference Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res. 2008;14:5198–208.CrossRefPubMed Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res. 2008;14:5198–208.CrossRefPubMed
8.
go back to reference McLachlan J, Banerjee S. Olaparib for the treatment of epithelial ovarian cancer. Expert Opin Pharmacother. 2016;17:995–1003.CrossRefPubMed McLachlan J, Banerjee S. Olaparib for the treatment of epithelial ovarian cancer. Expert Opin Pharmacother. 2016;17:995–1003.CrossRefPubMed
9.
go back to reference Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D’Andrea AD. Homologous recombination deficiency: Exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov. 2015;5:1137–54.CrossRefPubMedPubMedCentral Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D’Andrea AD. Homologous recombination deficiency: Exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov. 2015;5:1137–54.CrossRefPubMedPubMedCentral
10.
go back to reference Pilarsky C, Wenzig M, Specht T, Saeger HD, Grützmann R. Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia. 2004;6:744–50.CrossRefPubMedPubMedCentral Pilarsky C, Wenzig M, Specht T, Saeger HD, Grützmann R. Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia. 2004;6:744–50.CrossRefPubMedPubMedCentral
11.
go back to reference Zona S, Bella L, Burton MJ, Nestal de Moraes G, Lam EW. FOXM1: an emerging master regulator of DNA damage response and genotoxic agent resistance. Biochim Biophys Acta. 2014;1839:1316–22.CrossRefPubMedPubMedCentral Zona S, Bella L, Burton MJ, Nestal de Moraes G, Lam EW. FOXM1: an emerging master regulator of DNA damage response and genotoxic agent resistance. Biochim Biophys Acta. 2014;1839:1316–22.CrossRefPubMedPubMedCentral
12.
go back to reference Wierstra I, Alves J. FOXM1, a typical proliferation-associated transcription factor. Biol Chem. 2007;388:1257–74.PubMed Wierstra I, Alves J. FOXM1, a typical proliferation-associated transcription factor. Biol Chem. 2007;388:1257–74.PubMed
14.
go back to reference Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.CrossRef Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.CrossRef
15.
go back to reference Lok GT, Chan DW, Liu VW, Hui WW, Leung TH, Yao KM, Ngan HY. Aberrant activation of ERK/FOXM1 signaling cascade triggers the cell migration/invasion in ovarian cancer cells. PLoS One. 2011;6:e23790.CrossRefPubMedPubMedCentral Lok GT, Chan DW, Liu VW, Hui WW, Leung TH, Yao KM, Ngan HY. Aberrant activation of ERK/FOXM1 signaling cascade triggers the cell migration/invasion in ovarian cancer cells. PLoS One. 2011;6:e23790.CrossRefPubMedPubMedCentral
16.
go back to reference Chiu WT, Huang YF, Tsai HY, Chen CC, Chang CH, Huang SC, et al. FOXM1 confers to epithelial-mesenchymal transition, stemness and chemoresistance in epithelial ovarian carcinoma cells. Oncotarget. 2015;6:2349–65.CrossRefPubMed Chiu WT, Huang YF, Tsai HY, Chen CC, Chang CH, Huang SC, et al. FOXM1 confers to epithelial-mesenchymal transition, stemness and chemoresistance in epithelial ovarian carcinoma cells. Oncotarget. 2015;6:2349–65.CrossRefPubMed
17.
go back to reference Zhao F, Siu MK, Jiang L, Tam KF, Ngan HY, Le XF, et al. Overexpression of forkhead box protein M1 (FOXM1) in ovarian cancer correlates with poor patient survival and contributes to paclitaxel resistance. PLoS One. 2014;9(11):e113478.CrossRefPubMedPubMedCentral Zhao F, Siu MK, Jiang L, Tam KF, Ngan HY, Le XF, et al. Overexpression of forkhead box protein M1 (FOXM1) in ovarian cancer correlates with poor patient survival and contributes to paclitaxel resistance. PLoS One. 2014;9(11):e113478.CrossRefPubMedPubMedCentral
18.
go back to reference Zhou J, Wang Y, Wang Y, Yin X, He Y, Chen L, et al. FOXM1 modulates cisplatin sensitivity by regulating EXO1 in ovarian cancer. PLoS One. 2014;9(5):e96989.CrossRefPubMedPubMedCentral Zhou J, Wang Y, Wang Y, Yin X, He Y, Chen L, et al. FOXM1 modulates cisplatin sensitivity by regulating EXO1 in ovarian cancer. PLoS One. 2014;9(5):e96989.CrossRefPubMedPubMedCentral
19.
go back to reference Wen N, Wang Y, Wen L, Zhao SH, Ai ZH, Wang Y, et al. Overexpression of FOXM1 predicts poor prognosis and promotes cancer cell proliferation, migration and invasion in epithelial ovarian cancer. J Transl Med. 2014;12:134.CrossRefPubMedPubMedCentral Wen N, Wang Y, Wen L, Zhao SH, Ai ZH, Wang Y, et al. Overexpression of FOXM1 predicts poor prognosis and promotes cancer cell proliferation, migration and invasion in epithelial ovarian cancer. J Transl Med. 2014;12:134.CrossRefPubMedPubMedCentral
20.
go back to reference Ning Y, Li Q, Xiang H, Liu F, Cao J. Apoptosis induced by 7-difluoromethoxyl-5,4'-di-n-octyl genistein via the inactivation of FoxM1 in ovarian cancer cells. Oncol Rep. 2012;27:1857–64.PubMed Ning Y, Li Q, Xiang H, Liu F, Cao J. Apoptosis induced by 7-difluoromethoxyl-5,4'-di-n-octyl genistein via the inactivation of FoxM1 in ovarian cancer cells. Oncol Rep. 2012;27:1857–64.PubMed
21.
22.
go back to reference Rustin GJ, Vergote I, Eisenhauer E, Pujade-Lauraine E, Quinn M, Thigpen T, et al. Gynecological Cancer Intergroup. Definitions for response and progression in ovarian cancer clinical trials incorporating RECIST 1.1 and CA 125 agreed by the Gynecological Cancer Intergroup (GCIG). Int J Gynecol Cancer. 2011;21:419–23.CrossRefPubMed Rustin GJ, Vergote I, Eisenhauer E, Pujade-Lauraine E, Quinn M, Thigpen T, et al. Gynecological Cancer Intergroup. Definitions for response and progression in ovarian cancer clinical trials incorporating RECIST 1.1 and CA 125 agreed by the Gynecological Cancer Intergroup (GCIG). Int J Gynecol Cancer. 2011;21:419–23.CrossRefPubMed
23.
go back to reference Colombo N. Optimising the treatment of the partially platinum-sensitive relapsed ovarian cancer patient. EJC Suppl. 2014;12:7–12.CrossRefPubMed Colombo N. Optimising the treatment of the partially platinum-sensitive relapsed ovarian cancer patient. EJC Suppl. 2014;12:7–12.CrossRefPubMed
24.
go back to reference Bignotti E, Tassi RA, Calza S, Ravaggi A, Romani C, Rossi E, et al. Differential gene expression profiles between tumor biopsies and short-term primary cultures of ovarian serous carcinomas: identification of novel molecular biomarkers for early diagnosis and therapy. Gynecol Oncol. 2006;103:405–16.CrossRefPubMed Bignotti E, Tassi RA, Calza S, Ravaggi A, Romani C, Rossi E, et al. Differential gene expression profiles between tumor biopsies and short-term primary cultures of ovarian serous carcinomas: identification of novel molecular biomarkers for early diagnosis and therapy. Gynecol Oncol. 2006;103:405–16.CrossRefPubMed
25.
go back to reference Bignotti E, Calza S, Tassi RA, Zanotti L, Bandiera E, Sartori E, et al. Identification of stably expressed reference small non-coding RNAs for microRNA quantification in high-grade serous ovarian carcinoma tissues. J Cell Mol Med. 2016;20:2341–8.CrossRefPubMedPubMedCentral Bignotti E, Calza S, Tassi RA, Zanotti L, Bandiera E, Sartori E, et al. Identification of stably expressed reference small non-coding RNAs for microRNA quantification in high-grade serous ovarian carcinoma tissues. J Cell Mol Med. 2016;20:2341–8.CrossRefPubMedPubMedCentral
26.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.CrossRefPubMed
27.
go back to reference Gemenetzidis E, Bose A, Riaz AM, Chaplin T, Young BD, Ali M, et al. FOXM1 upregulation is an early event in human squamous cell carcinoma and it is enhanced by nicotine during malignant transformation. PLoS One. 2009;4(3):e4849.CrossRefPubMedPubMedCentral Gemenetzidis E, Bose A, Riaz AM, Chaplin T, Young BD, Ali M, et al. FOXM1 upregulation is an early event in human squamous cell carcinoma and it is enhanced by nicotine during malignant transformation. PLoS One. 2009;4(3):e4849.CrossRefPubMedPubMedCentral
28.
go back to reference Bertuzzi A, Gandolfi A, Germani A, Spanò M, Starace G, Vitelli R. Analysis of DNA synthesis rate of cultured cells from flow cytometric data. Cytometry. 1984;5(6):619–28.CrossRefPubMed Bertuzzi A, Gandolfi A, Germani A, Spanò M, Starace G, Vitelli R. Analysis of DNA synthesis rate of cultured cells from flow cytometric data. Cytometry. 1984;5(6):619–28.CrossRefPubMed
29.
go back to reference Cappella P, Gasparri F, Pulici M, Moll J. Cell Proliferation Method: Click Chemistry Based on BrdU Coupling for Multiplex Antibody Staining. Curr Protoc Cytom. 2015;72:7.34.1–17.CrossRef Cappella P, Gasparri F, Pulici M, Moll J. Cell Proliferation Method: Click Chemistry Based on BrdU Coupling for Multiplex Antibody Staining. Curr Protoc Cytom. 2015;72:7.34.1–17.CrossRef
30.
go back to reference Cappella P, Moll J. Assessment of Cell Cycle Inhibitors by Flow Cytometry. INTECH Open Access Publisher. 2011. Cappella P, Moll J. Assessment of Cell Cycle Inhibitors by Flow Cytometry. INTECH Open Access Publisher. 2011.
31.
go back to reference Bollea A, Masseroli M, Nicotra A, Beccaglia P, Sen S, Erba E, Balconi G. Automatic quantitation of cell colonies on petri dishes by computerized image analysis. Cytotechnology. 1995;17:185–91.CrossRefPubMed Bollea A, Masseroli M, Nicotra A, Beccaglia P, Sen S, Erba E, Balconi G. Automatic quantitation of cell colonies on petri dishes by computerized image analysis. Cytotechnology. 1995;17:185–91.CrossRefPubMed
32.
go back to reference Andersen P, Gill R. Cox’s regression model for counting processes, a large sample study. Ann Stat. 1982;10:1100–20.CrossRef Andersen P, Gill R. Cox’s regression model for counting processes, a large sample study. Ann Stat. 1982;10:1100–20.CrossRef
33.
go back to reference Rota M, Antolini L, Valsecchi MG. Optimal cut-point definition in biomarkers: the case of censored failure time outcome. BMC Med Res Methodol. 2015;21:15–24. Rota M, Antolini L, Valsecchi MG. Optimal cut-point definition in biomarkers: the case of censored failure time outcome. BMC Med Res Methodol. 2015;21:15–24.
34.
go back to reference Barger CJ, Zhang W, Hillman J, Stablewski AB, Higgins MJ, Vanderhyden BC, et al. Genetic determinants of FOXM1 overexpression in epithelial ovarian cancer and functional contribution to cell cycle progression. Oncotarget. 2015;6:27613–27.CrossRefPubMedPubMedCentral Barger CJ, Zhang W, Hillman J, Stablewski AB, Higgins MJ, Vanderhyden BC, et al. Genetic determinants of FOXM1 overexpression in epithelial ovarian cancer and functional contribution to cell cycle progression. Oncotarget. 2015;6:27613–27.CrossRefPubMedPubMedCentral
35.
go back to reference Broggini M, Buraggi G, Brenna A, Riva L, Codegoni AM, Torri V, et al. Cell cycle-related phosphatases CDC25A and B expression correlates with survival in ovarian cancer patients. Anticancer Res. 2000;20:4835–40.PubMed Broggini M, Buraggi G, Brenna A, Riva L, Codegoni AM, Torri V, et al. Cell cycle-related phosphatases CDC25A and B expression correlates with survival in ovarian cancer patients. Anticancer Res. 2000;20:4835–40.PubMed
36.
go back to reference Lee YH, Heo JH, Kim TH, Kang H, Kim G, Kim J, et al. Significance of cell cycle regulatory proteins as malignant and prognostic biomarkers in ovarian epithelial tumors. Int J Gynecol Pathol. 2011;30:205–17.CrossRefPubMed Lee YH, Heo JH, Kim TH, Kang H, Kim G, Kim J, et al. Significance of cell cycle regulatory proteins as malignant and prognostic biomarkers in ovarian epithelial tumors. Int J Gynecol Pathol. 2011;30:205–17.CrossRefPubMed
37.
go back to reference Shigemasa K, Hu C, West CM, Clarke J, Parham GP, Parmley TH, et al. p16 overexpression: a potential early indicator of transformation in ovarian carcinoma. J Soc Gynecol Investig. 1997;4:95–102.PubMed Shigemasa K, Hu C, West CM, Clarke J, Parham GP, Parmley TH, et al. p16 overexpression: a potential early indicator of transformation in ovarian carcinoma. J Soc Gynecol Investig. 1997;4:95–102.PubMed
38.
go back to reference Bae I, Rih JK, Kim HJ, Kang HJ, Haddad B, Kirilyuk A, et al. BRCA1 regulates gene expression for orderly mitotic progression. Cell Cycle. 2005;4:1641–66.CrossRefPubMed Bae I, Rih JK, Kim HJ, Kang HJ, Haddad B, Kirilyuk A, et al. BRCA1 regulates gene expression for orderly mitotic progression. Cell Cycle. 2005;4:1641–66.CrossRefPubMed
39.
go back to reference Chukkapalli S, Amessou M, Dilly AK, Dekhil H, Zhao J, Liu Q, Bejna A, et al. Role of the EphB2 receptor in autophagy, apoptosis and invasion in human breast cancer cells. Exp Cell Res. 2014;320(2):233–46.CrossRefPubMed Chukkapalli S, Amessou M, Dilly AK, Dekhil H, Zhao J, Liu Q, Bejna A, et al. Role of the EphB2 receptor in autophagy, apoptosis and invasion in human breast cancer cells. Exp Cell Res. 2014;320(2):233–46.CrossRefPubMed
40.
go back to reference Ishimura N, Isomoto H, Bronk SF, Gores GJ. Trail induces cell migration and invasion in apoptosis-resistant cholangiocarcinoma cells. Am J Physiol Gastrointest Liver Physiol. 2006;290(1):G129–36.CrossRefPubMed Ishimura N, Isomoto H, Bronk SF, Gores GJ. Trail induces cell migration and invasion in apoptosis-resistant cholangiocarcinoma cells. Am J Physiol Gastrointest Liver Physiol. 2006;290(1):G129–36.CrossRefPubMed
41.
go back to reference Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res. 2013;119:191–419.CrossRefPubMed Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res. 2013;119:191–419.CrossRefPubMed
42.
go back to reference Itamochi H, Yoshida T, Walker CL, Bartholomeusz C, Aoki D, Ishihara H, et al. Novel mechanism of reduced proliferation in ovarian clear cell carcinoma cells: cytoplasmic sequestration of CDK2 by p27. Gynecol Oncol. 2011;122:641–7.CrossRefPubMed Itamochi H, Yoshida T, Walker CL, Bartholomeusz C, Aoki D, Ishihara H, et al. Novel mechanism of reduced proliferation in ovarian clear cell carcinoma cells: cytoplasmic sequestration of CDK2 by p27. Gynecol Oncol. 2011;122:641–7.CrossRefPubMed
43.
go back to reference Yang L, Fang D, Chen H, Lu Y, Dong Z, Ding HF, et al. Cyclin-dependent kinase 2 is an ideal target for ovary tumors with elevated cyclin E1 expression. Oncotarget. 2015;6:20801–12.CrossRefPubMedPubMedCentral Yang L, Fang D, Chen H, Lu Y, Dong Z, Ding HF, et al. Cyclin-dependent kinase 2 is an ideal target for ovary tumors with elevated cyclin E1 expression. Oncotarget. 2015;6:20801–12.CrossRefPubMedPubMedCentral
44.
go back to reference Waseem A, Ali M, Odell EW, Fortune F, Teh MT. Downstream targets of FOXM1: CEP55 and HELLS are cancer progression markers of head and neck squamous cell carcinoma. Oral Oncol. 2010;46:536–42.CrossRefPubMed Waseem A, Ali M, Odell EW, Fortune F, Teh MT. Downstream targets of FOXM1: CEP55 and HELLS are cancer progression markers of head and neck squamous cell carcinoma. Oral Oncol. 2010;46:536–42.CrossRefPubMed
45.
go back to reference Tan Y, Raychaudhuri P, Costa RH. Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol Cell Biol. 2007;27:1007–16.CrossRefPubMed Tan Y, Raychaudhuri P, Costa RH. Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol Cell Biol. 2007;27:1007–16.CrossRefPubMed
46.
go back to reference Aytes A, Mitrofanova A, Lefebvre C, Alvarez MJ, Castillo-Martin M, Zheng T, et al. Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer Cell. 2014;25:638–51.CrossRefPubMedPubMedCentral Aytes A, Mitrofanova A, Lefebvre C, Alvarez MJ, Castillo-Martin M, Zheng T, et al. Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer Cell. 2014;25:638–51.CrossRefPubMedPubMedCentral
47.
go back to reference Erriquez J, Becco P, Olivero M, Ponzone R, Maggiorotto F, Ferrero A, et al. TOP2A gene copy gain predicts response of epithelial ovarian cancers to pegylated liposomal doxorubicin: TOP2A as marker of response to PLD in ovarian cancer. Gynecol Oncol. 2015;138:627–33.CrossRefPubMed Erriquez J, Becco P, Olivero M, Ponzone R, Maggiorotto F, Ferrero A, et al. TOP2A gene copy gain predicts response of epithelial ovarian cancers to pegylated liposomal doxorubicin: TOP2A as marker of response to PLD in ovarian cancer. Gynecol Oncol. 2015;138:627–33.CrossRefPubMed
48.
go back to reference Zhang R, Shi H, Ren F, Li X, Zhang M, Feng W, Jia Y. Knockdown of MACC1 expression increases cisplatin sensitivity in cisplatin-resistant epithelial ovarian cancer cells. Oncol Rep. 2016;35:2466–72.PubMed Zhang R, Shi H, Ren F, Li X, Zhang M, Feng W, Jia Y. Knockdown of MACC1 expression increases cisplatin sensitivity in cisplatin-resistant epithelial ovarian cancer cells. Oncol Rep. 2016;35:2466–72.PubMed
49.
go back to reference Chen ZM, Shi HR, Li X, Deng YX, Zhang RT. Downregulation of MACC1 expression enhances cisplatin sensitivity in SKOV-3/DDP cells. Genet Mol Res. 2015;14:17134–44.CrossRefPubMed Chen ZM, Shi HR, Li X, Deng YX, Zhang RT. Downregulation of MACC1 expression enhances cisplatin sensitivity in SKOV-3/DDP cells. Genet Mol Res. 2015;14:17134–44.CrossRefPubMed
50.
go back to reference Chan DW, Hui WW, Cai PC, Liu MX, Yung MM, Mak CS, et al. Targeting GRB7/ERK/FOXM1 signaling pathway impairs aggressiveness of ovarian cancer cells. PLoS One. 2012;7(12):e52578.CrossRefPubMedPubMedCentral Chan DW, Hui WW, Cai PC, Liu MX, Yung MM, Mak CS, et al. Targeting GRB7/ERK/FOXM1 signaling pathway impairs aggressiveness of ovarian cancer cells. PLoS One. 2012;7(12):e52578.CrossRefPubMedPubMedCentral
51.
go back to reference Li J, Jiang K, Qiu X, Li M, Hao Q, Wei L, et al. Overexpression of CXCR4 is significantly associated with cisplatin-based chemotherapy resistance and can be a prognostic factor in epithelial ovarian cancer. BMB Rep. 2014;47(1):33–8.CrossRefPubMedPubMedCentral Li J, Jiang K, Qiu X, Li M, Hao Q, Wei L, et al. Overexpression of CXCR4 is significantly associated with cisplatin-based chemotherapy resistance and can be a prognostic factor in epithelial ovarian cancer. BMB Rep. 2014;47(1):33–8.CrossRefPubMedPubMedCentral
52.
go back to reference Gil M, Komorowski MP, Seshadri M, Rokita H, McGray AJ, Opyrchal M, et al. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J Immunol. 2014;193:5327–37.CrossRefPubMedPubMedCentral Gil M, Komorowski MP, Seshadri M, Rokita H, McGray AJ, Opyrchal M, et al. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J Immunol. 2014;193:5327–37.CrossRefPubMedPubMedCentral
53.
go back to reference Chan JK, Teoh D, Hu JM, Shin JY, Osann K, Kapp DS. Do clear cell ovarian carcinomas have poorer prognosis compared to other epithelial cell types? A study of 1411 clear cell ovarian cancers. Gynecol Oncol. 2008;109:370–6.CrossRefPubMed Chan JK, Teoh D, Hu JM, Shin JY, Osann K, Kapp DS. Do clear cell ovarian carcinomas have poorer prognosis compared to other epithelial cell types? A study of 1411 clear cell ovarian cancers. Gynecol Oncol. 2008;109:370–6.CrossRefPubMed
54.
go back to reference Shen H, Cai M, Zhao S, Wang H, Li M, Yao S, et al. CYR61 overexpression associated with the development and poor prognosis of ovarian carcinoma. Med Oncol. 2014;31:117.CrossRefPubMed Shen H, Cai M, Zhao S, Wang H, Li M, Yao S, et al. CYR61 overexpression associated with the development and poor prognosis of ovarian carcinoma. Med Oncol. 2014;31:117.CrossRefPubMed
55.
go back to reference Abdel-Fatah T, Sultana R, Abbotts R, Hawkes C, Seedhouse C, Chan S, et al. Clinicopathological and functional significance of XRCC1 expression in ovarian cancer. Int J Cancer. 2013;132:2778–86.CrossRefPubMed Abdel-Fatah T, Sultana R, Abbotts R, Hawkes C, Seedhouse C, Chan S, et al. Clinicopathological and functional significance of XRCC1 expression in ovarian cancer. Int J Cancer. 2013;132:2778–86.CrossRefPubMed
56.
go back to reference Hartlerode AJ, Willis NA, Rajendran A, Manis JP, Scully R. Complex Breakpoints and Template Switching Associated with Non-canonical Termination of Homologous Recombination in Mammalian Cells. PLoS Genet. 2016;12:e1006410.CrossRefPubMedPubMedCentral Hartlerode AJ, Willis NA, Rajendran A, Manis JP, Scully R. Complex Breakpoints and Template Switching Associated with Non-canonical Termination of Homologous Recombination in Mammalian Cells. PLoS Genet. 2016;12:e1006410.CrossRefPubMedPubMedCentral
59.
go back to reference Gudmundsdottir K, Ashworth A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene. 2006;25:5864–74.CrossRefPubMed Gudmundsdottir K, Ashworth A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene. 2006;25:5864–74.CrossRefPubMed
60.
go back to reference Miyasaka A, Oda K, Yuji Ikeda Y, Wada-Hiraike O, Kashiyama T, Enomoto A, et al. Anti-tumor activity of olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor, in cultured endometrial carcinoma cells. BMC Cancer. 2014;14:179.CrossRefPubMedPubMedCentral Miyasaka A, Oda K, Yuji Ikeda Y, Wada-Hiraike O, Kashiyama T, Enomoto A, et al. Anti-tumor activity of olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor, in cultured endometrial carcinoma cells. BMC Cancer. 2014;14:179.CrossRefPubMedPubMedCentral
61.
go back to reference Stordal B, Timms K, Farrelly A, Gallagher D, Busschots S, Renaud M, et al. BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation. Mol Oncol. 2013;7:567–79.CrossRefPubMedPubMedCentral Stordal B, Timms K, Farrelly A, Gallagher D, Busschots S, Renaud M, et al. BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation. Mol Oncol. 2013;7:567–79.CrossRefPubMedPubMedCentral
62.
go back to reference Zhao F, Lam EW. Role of the forkhead transcription factor FOXO-FOXM1 axis in cancer and drug resistance. Front Med. 2012;6:376–80.CrossRefPubMed Zhao F, Lam EW. Role of the forkhead transcription factor FOXO-FOXM1 axis in cancer and drug resistance. Front Med. 2012;6:376–80.CrossRefPubMed
63.
go back to reference Chen Y, Ruben EA, Rajadas J, Teng NN. In silico investigation of FOXM1 binding and novel inhibitors in epithelial ovarian cancer. Bioorg Med Chem. 2015;23:4576–82.CrossRefPubMed Chen Y, Ruben EA, Rajadas J, Teng NN. In silico investigation of FOXM1 binding and novel inhibitors in epithelial ovarian cancer. Bioorg Med Chem. 2015;23:4576–82.CrossRefPubMed
64.
go back to reference Zhang Z, Ma P, Jing Y, Yan Y, Cai MC, Zhang M, et al. BET Bromodomain Inhibition as a Therapeutic Strategy in Ovarian Cancer by Downregulating FoxM1. Theranostics. 2016;6:219–30.CrossRefPubMedPubMedCentral Zhang Z, Ma P, Jing Y, Yan Y, Cai MC, Zhang M, et al. BET Bromodomain Inhibition as a Therapeutic Strategy in Ovarian Cancer by Downregulating FoxM1. Theranostics. 2016;6:219–30.CrossRefPubMedPubMedCentral
Metadata
Title
FOXM1 expression is significantly associated with chemotherapy resistance and adverse prognosis in non-serous epithelial ovarian cancer patients
Authors
Renata A. Tassi
Paola Todeschini
Eric R. Siegel
Stefano Calza
Paolo Cappella
Laura Ardighieri
Moris Cadei
Mattia Bugatti
Chiara Romani
Elisabetta Bandiera
Laura Zanotti
Laura Tassone
Donatella Guarino
Concetta Santonocito
Ettore D. Capoluongo
Luca Beltrame
Eugenio Erba
Sergio Marchini
Maurizio D’Incalci
Carla Donzelli
Alessandro D. Santin
Sergio Pecorelli
Enrico Sartori
Eliana Bignotti
Franco Odicino
Antonella Ravaggi
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2017
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-017-0536-y

Other articles of this Issue 1/2017

Journal of Experimental & Clinical Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine