Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2016

Open Access 01-12-2016 | Research

Leptin promotes epithelial-mesenchymal transition of breast cancer via the upregulation of pyruvate kinase M2

Authors: Lan Wei, Kuangfa Li, Xueli Pang, Bianqin Guo, Min Su, Yunxiu Huang, Nian Wang, Feihu Ji, Changli Zhong, Junhong Yang, Zhiqian Zhang, Yulin Jiang, Yifeng Liu, Tingmei Chen

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2016

Login to get access

Abstract

Background

Accumulating researches have shown that epithelial-mesenchymal transition (EMT) contributes to tumor metastasis. Leptin, a key adipokine secreted from adipocytes, shapes the tumor microenvironment, potentiates the migration of breast cancer cells and angiogenesis, and is also involved in EMT. However, the potential mechanism remains unknown. This study aims to explore the effect of leptin on EMT in breast cancer cells and the underlying mechanism.

Methods

With the assessment of EMT-associated marker expression in MCF-7, SK-BR-3, and MDA-MB-468 cells, the effect of leptin on breast cancer cells was analyzed. Besides, an array of pathway inhibitors as well as RNA interference targeting pyruvate kinase M2 (PKM2) were used to clarify the underlying mechanism of leptin-mediated EMT in vitro and in vivo.

Results

The results demonstrated that leptin promoted breast cancer cells EMT, visibly activated the PI3K/AKT signaling pathway, and upregulated PKM2 expression. An antibody against the leptin receptor (anti-ObR) and the PI3K/AKT signaling pathway inhibitor LY294002 significantly abolished leptin-induced PKM2 expression and EMT-associated marker expression. SiRNA targeting PKM2 partially abolished leptin-induced migration, invasion, and EMT-associated marker expression. In vivo xenograft experiments indicated that RNA interference against PKM2 suppressed breast cancer growth and metastasis.

Conclusions

Our data suggest that leptin promotes EMT in breast cancer cells via the upregulation of PKM2 expression as well as activation of PI3K/AKT signaling pathway, and PKM2 might be one of the key points and potential targets for breast cancer therapy.
Literature
1.
go back to reference Ray A. Adipokine leptin in obesity-related pathology of breast cancer. J Biosci. 2012;37(2):289–94.PubMedCrossRef Ray A. Adipokine leptin in obesity-related pathology of breast cancer. J Biosci. 2012;37(2):289–94.PubMedCrossRef
2.
go back to reference Muller C. Tumour-surrounding adipocytes are active players in breast cancer progression. Annales D Endocrinologie. 2013;74(2):108–10.PubMedCrossRef Muller C. Tumour-surrounding adipocytes are active players in breast cancer progression. Annales D Endocrinologie. 2013;74(2):108–10.PubMedCrossRef
3.
go back to reference Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71(7):2455–65.PubMedCrossRef Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71(7):2455–65.PubMedCrossRef
4.
go back to reference Kajimoto K, Naraba H, Iwai N. MicroRNA and 3 T3-L1 pre-adipocyte differentiation. Rna-a Publ Rna Soc. 2006;12(9):1626–32.CrossRef Kajimoto K, Naraba H, Iwai N. MicroRNA and 3 T3-L1 pre-adipocyte differentiation. Rna-a Publ Rna Soc. 2006;12(9):1626–32.CrossRef
5.
go back to reference Grossmann ME, Ray ANkhata KJ, Malakhov DA, Rogozina OP, Dogan S, Cleary MP. Obesity and breast cancer: status of leptin and adiponectin in pathological processes. Cancer Metastasis Rev. 2010;29(4):641–53.PubMedCrossRef Grossmann ME, Ray ANkhata KJ, Malakhov DA, Rogozina OP, Dogan S, Cleary MP. Obesity and breast cancer: status of leptin and adiponectin in pathological processes. Cancer Metastasis Rev. 2010;29(4):641–53.PubMedCrossRef
6.
go back to reference Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763–70.PubMedCrossRef Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763–70.PubMedCrossRef
7.
go back to reference Isse N, Ogawa Y, Tamura N, Masuzaki H, Mori K, Okazaki T, Satoh N, Shigemoto M, Yoshimasa Y, Nishi S. Structural organization and chromosomal assignment of the human obese gene. J Biol Chem. 1995;270(46):27728–33.PubMedCrossRef Isse N, Ogawa Y, Tamura N, Masuzaki H, Mori K, Okazaki T, Satoh N, Shigemoto M, Yoshimasa Y, Nishi S. Structural organization and chromosomal assignment of the human obese gene. J Biol Chem. 1995;270(46):27728–33.PubMedCrossRef
8.
go back to reference Reddy NM, Kalyani P, Kaiser J. Adiponectin and leptin molecular actions and clinical significance in breast cancer. Int Hematol Oncol Stem Cell Res. 2014;8(8):31–40. Reddy NM, Kalyani P, Kaiser J. Adiponectin and leptin molecular actions and clinical significance in breast cancer. Int Hematol Oncol Stem Cell Res. 2014;8(8):31–40.
9.
10.
go back to reference Guo S, Liu M, Wang G, Torroella-Kouri M, Gonzalez-Perez RR. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochimica Et Biophysica Acta. 2012;1825(2):207–22.PubMedPubMedCentral Guo S, Liu M, Wang G, Torroella-Kouri M, Gonzalez-Perez RR. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochimica Et Biophysica Acta. 2012;1825(2):207–22.PubMedPubMedCentral
11.
go back to reference Newman G, Gonzalez-Perez RR. Leptin-cytokine crosstalk in breast cancer. Mol Cell Endocrinol. 2014;382(1):570–82.PubMedCrossRef Newman G, Gonzalez-Perez RR. Leptin-cytokine crosstalk in breast cancer. Mol Cell Endocrinol. 2014;382(1):570–82.PubMedCrossRef
12.
go back to reference Garofalo C, Koda M, Cascio S, Sulkowska M, Kanczuga-Koda L, Golaszewska J, Russo A, Sulkowski S, Surmacz E. Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clin Cancer Res. 2006;12(5):1447–53.PubMedCrossRef Garofalo C, Koda M, Cascio S, Sulkowska M, Kanczuga-Koda L, Golaszewska J, Russo A, Sulkowski S, Surmacz E. Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clin Cancer Res. 2006;12(5):1447–53.PubMedCrossRef
14.
go back to reference Hamabe A, Konno M, Tanuma N, Shima H, Tsunekuni K, Kawamoto K, Nishida N, Koseki J, Mimori K, Gotoh N. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc Natl Acad Sci. 2014;111(43):15526–31.PubMedPubMedCentralCrossRef Hamabe A, Konno M, Tanuma N, Shima H, Tsunekuni K, Kawamoto K, Nishida N, Koseki J, Mimori K, Gotoh N. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc Natl Acad Sci. 2014;111(43):15526–31.PubMedPubMedCentralCrossRef
15.
go back to reference Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C, Fauvet F, Puisieux I, Doglioni C, Piccinin S. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell. 2008;14(1):79–89.PubMedCrossRef Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C, Fauvet F, Puisieux I, Doglioni C, Piccinin S. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell. 2008;14(1):79–89.PubMedCrossRef
16.
go back to reference Yang L, Hou Y, Yuan J, Tang S, Zhang H, Zhu Q, Du YE, Zhou M, Wen S, Xu L. Twist promotes reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways. Oncotarget. 2015;6(28):25755–69.PubMedPubMedCentralCrossRef Yang L, Hou Y, Yuan J, Tang S, Zhang H, Zhu Q, Du YE, Zhou M, Wen S, Xu L. Twist promotes reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways. Oncotarget. 2015;6(28):25755–69.PubMedPubMedCentralCrossRef
17.
go back to reference Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7):927–39.PubMedCrossRef Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7):927–39.PubMedCrossRef
18.
go back to reference Eckert M, Lwin T, Chang A, Kim J, Danis E, Ohno-Machado L, Yang J. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell. 2011;19(3):372–86.PubMedPubMedCentralCrossRef Eckert M, Lwin T, Chang A, Kim J, Danis E, Ohno-Machado L, Yang J. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell. 2011;19(3):372–86.PubMedPubMedCentralCrossRef
19.
go back to reference Karreth F, Tuveson DA. Twist induces an epithelial-mesenchymal transition to facilitate tumor metastasis. Cancer Biol Ther. 2004;3(11):1058–9.PubMedCrossRef Karreth F, Tuveson DA. Twist induces an epithelial-mesenchymal transition to facilitate tumor metastasis. Cancer Biol Ther. 2004;3(11):1058–9.PubMedCrossRef
20.
go back to reference Lin W, Tang C, Hong C, Li K, Pang X, Liang Z, Dang W, Hao T, Huang Y, Lan W. Activation of IL-8 via PI3K/Akt-dependent pathway is involved in leptin-mediated epithelial-mesenchymal transition in human breast cancer cells. Cancer Biol Ther. 2015;16(8):1220–30.CrossRef Lin W, Tang C, Hong C, Li K, Pang X, Liang Z, Dang W, Hao T, Huang Y, Lan W. Activation of IL-8 via PI3K/Akt-dependent pathway is involved in leptin-mediated epithelial-mesenchymal transition in human breast cancer cells. Cancer Biol Ther. 2015;16(8):1220–30.CrossRef
21.
go back to reference Li Z, Yang P, Li Z. The multifaceted regulation and functions of PKM2 in tumor progression. Biochimica Et Biophysica Acta. 2014;1846(2):285–96.PubMed Li Z, Yang P, Li Z. The multifaceted regulation and functions of PKM2 in tumor progression. Biochimica Et Biophysica Acta. 2014;1846(2):285–96.PubMed
23.
go back to reference Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker EE, Ralser M, Cramer T. HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1–3 and PKM2. Stem Cells. 2014;32(2):364–76.PubMedCrossRef Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker EE, Ralser M, Cramer T. HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1–3 and PKM2. Stem Cells. 2014;32(2):364–76.PubMedCrossRef
24.
go back to reference Lv L, Xu YP, Zhao D, Li FL, Wang W, Sasaki N, Jiang Y, Zhou X, Li TT, Guan KL. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell. 2013;52(3):340–52.PubMedPubMedCentralCrossRef Lv L, Xu YP, Zhao D, Li FL, Wang W, Sasaki N, Jiang Y, Zhou X, Li TT, Guan KL. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell. 2013;52(3):340–52.PubMedPubMedCentralCrossRef
25.
go back to reference Tanaka M, Masaki Y, Tanaka K, Miyazaki M, Kato M, Sugimoto R, Nakamura K, Aishima S, Shirabe K, Nakamuta M. Reduction of fatty acid oxidation and responses to hypoxia correlate with the progression of de-differentiation in HCC. Mol Med Rep. 2013;7(2):365–70.PubMed Tanaka M, Masaki Y, Tanaka K, Miyazaki M, Kato M, Sugimoto R, Nakamura K, Aishima S, Shirabe K, Nakamuta M. Reduction of fatty acid oxidation and responses to hypoxia correlate with the progression of de-differentiation in HCC. Mol Med Rep. 2013;7(2):365–70.PubMed
26.
go back to reference Whelan KA, Kinugasa H, Tanaka K, Srinivasan S, Guha M, Clair DS, Kleinszanto A, Avadhani N, Diehl A, Rustgi A. Abstract 1254: Mitochondrial SOD2 regulates EMT and cancer stem cell-like cell populations. Cancer Res. 2015;75(15 Supplement):1254.CrossRef Whelan KA, Kinugasa H, Tanaka K, Srinivasan S, Guha M, Clair DS, Kleinszanto A, Avadhani N, Diehl A, Rustgi A. Abstract 1254: Mitochondrial SOD2 regulates EMT and cancer stem cell-like cell populations. Cancer Res. 2015;75(15 Supplement):1254.CrossRef
27.
go back to reference Jung HY, Jing Y. Unraveling the TWIST between EMT and cancer stemness. Cell Stem Cell. 2015;16(1):1–2.PubMedCrossRef Jung HY, Jing Y. Unraveling the TWIST between EMT and cancer stemness. Cell Stem Cell. 2015;16(1):1–2.PubMedCrossRef
28.
go back to reference Nepal S, Mi JK, Jin TH, Sang HK, Sohn DH, Lee SH, Song K, Dong YC, Lee ES, Park PH. Autophagy induction by leptin contributes to suppression of apoptosis in cancer cells and xenograft model: Involvement of p53/FoxO3A axis. Oncotarget. 2015;6(9):7166–81.PubMedPubMedCentralCrossRef Nepal S, Mi JK, Jin TH, Sang HK, Sohn DH, Lee SH, Song K, Dong YC, Lee ES, Park PH. Autophagy induction by leptin contributes to suppression of apoptosis in cancer cells and xenograft model: Involvement of p53/FoxO3A axis. Oncotarget. 2015;6(9):7166–81.PubMedPubMedCentralCrossRef
29.
go back to reference Nepal S, Shrestha A, Park PH. Ubiquitin specific protease 2 acts as a key modulator for the regulation of cell cycle by adiponectin and leptin in cancer cells. Mol Cell Endocrinol. 2015;412:44–55.PubMedCrossRef Nepal S, Shrestha A, Park PH. Ubiquitin specific protease 2 acts as a key modulator for the regulation of cell cycle by adiponectin and leptin in cancer cells. Mol Cell Endocrinol. 2015;412:44–55.PubMedCrossRef
31.
go back to reference Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC, Lu Z. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. 2012;15(1):1295–304.CrossRef Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC, Lu Z. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. 2012;15(1):1295–304.CrossRef
32.
go back to reference Lee J, Kim HK, Han YM, Kim J. Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int J Biochem Cell Biol. 2008;40(5):1043–54.PubMedCrossRef Lee J, Kim HK, Han YM, Kim J. Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int J Biochem Cell Biol. 2008;40(5):1043–54.PubMedCrossRef
33.
go back to reference Luo W, Semenza GL. Emerging roles of PKM2 in cell metabolism and cancer progression. Trends in Endocrinol Metabolism Tem. 2012;23(11):560–6.PubMedCrossRef Luo W, Semenza GL. Emerging roles of PKM2 in cell metabolism and cancer progression. Trends in Endocrinol Metabolism Tem. 2012;23(11):560–6.PubMedCrossRef
34.
go back to reference Jiang Y, Li X, Yang W, Hawke DH, Zheng Y, Yan X, Aldape K, Wei C, Fang G, Yan C. PKM2 regulates chromosome segregation and mitosis progression of tumor cells. Mol Cell. 2014;53(1):75–87.PubMedCrossRef Jiang Y, Li X, Yang W, Hawke DH, Zheng Y, Yan X, Aldape K, Wei C, Fang G, Yan C. PKM2 regulates chromosome segregation and mitosis progression of tumor cells. Mol Cell. 2014;53(1):75–87.PubMedCrossRef
35.
go back to reference Songfang H. Dual roles of PKM2 in cancer metabolism. Acta Biochimica Et Biophysica Sinica. 2012;45(1):27–35. Songfang H. Dual roles of PKM2 in cancer metabolism. Acta Biochimica Et Biophysica Sinica. 2012;45(1):27–35.
36.
go back to reference Fan FT, Shen CS, Tao L, Tian C, Liu ZG, Zhu ZJ, Liu YP, Pei CS, Wu HY, Zhang L. PKM2 regulates hepatocellular carcinoma cell epithelial-mesenchymal transition and migration upon EGFR activation. Asian Pac J Cancer Prev. 2014;15(5):1961–70.PubMedCrossRef Fan FT, Shen CS, Tao L, Tian C, Liu ZG, Zhu ZJ, Liu YP, Pei CS, Wu HY, Zhang L. PKM2 regulates hepatocellular carcinoma cell epithelial-mesenchymal transition and migration upon EGFR activation. Asian Pac J Cancer Prev. 2014;15(5):1961–70.PubMedCrossRef
37.
go back to reference Ha GH, Park JS, Breuer EKY. TACC3 promotes epithelial–mesenchymal transition (EMT) through the activation of PI3K/Akt and ERK signaling pathways. Cancer Lett. 2013;332(1):63–73.PubMedCrossRef Ha GH, Park JS, Breuer EKY. TACC3 promotes epithelial–mesenchymal transition (EMT) through the activation of PI3K/Akt and ERK signaling pathways. Cancer Lett. 2013;332(1):63–73.PubMedCrossRef
38.
go back to reference Tan J, You Y, Xu T, Yu P, Wu D, Deng H, Zhang Y, Bie P. Par-4 downregulation confers cisplatin resistance in pancreatic cancer cells via PI3K/Akt pathway-dependent EMT. Toxicol Lett. 2014;224(1):7–15.PubMedCrossRef Tan J, You Y, Xu T, Yu P, Wu D, Deng H, Zhang Y, Bie P. Par-4 downregulation confers cisplatin resistance in pancreatic cancer cells via PI3K/Akt pathway-dependent EMT. Toxicol Lett. 2014;224(1):7–15.PubMedCrossRef
39.
go back to reference Kwok WK, Ling MT, Lee TW, Lau TCM, Zhou C, Zhang X, Chua CW, Chan KW, Chan FL, Glackin C. Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res. 2005;65(12):250–7.CrossRef Kwok WK, Ling MT, Lee TW, Lau TCM, Zhou C, Zhang X, Chua CW, Chan KW, Chan FL, Glackin C. Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res. 2005;65(12):250–7.CrossRef
40.
go back to reference Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, Lin A, Kluger HM, Berger AJ, Cheng E, Trombetta ES. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res. 2004;64(15):5270–82.PubMedCrossRef Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, Lin A, Kluger HM, Berger AJ, Cheng E, Trombetta ES. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res. 2004;64(15):5270–82.PubMedCrossRef
41.
go back to reference Entz-Werlé N, Stoetzel C, Berard-Marec P, Kalifa C, Brugiere L, Pacquement H, Schmitt C, Tabone MD, Gentet JC, Quillet R. Frequent genomic abnormalities at TWIST in human pediatric osteosarcomas. Int J Cancer. 2005;117(3):349–55.PubMedCrossRef Entz-Werlé N, Stoetzel C, Berard-Marec P, Kalifa C, Brugiere L, Pacquement H, Schmitt C, Tabone MD, Gentet JC, Quillet R. Frequent genomic abnormalities at TWIST in human pediatric osteosarcomas. Int J Cancer. 2005;117(3):349–55.PubMedCrossRef
42.
go back to reference Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Höfler H, Becker KF. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol. 2002;161(5):1881–91.PubMedPubMedCentralCrossRef Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Höfler H, Becker KF. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol. 2002;161(5):1881–91.PubMedPubMedCentralCrossRef
43.
go back to reference Watanabe O, Imamura H, Shimizu T, Kinoshita J, Okabe T, Hirano A, Yoshimatsu K, Konno S, Aiba M, Ogawa K. Expression of twist and wnt in human breast cancer. Anticancer Res. 2004;24(6):3851–6.PubMed Watanabe O, Imamura H, Shimizu T, Kinoshita J, Okabe T, Hirano A, Yoshimatsu K, Konno S, Aiba M, Ogawa K. Expression of twist and wnt in human breast cancer. Anticancer Res. 2004;24(6):3851–6.PubMed
Metadata
Title
Leptin promotes epithelial-mesenchymal transition of breast cancer via the upregulation of pyruvate kinase M2
Authors
Lan Wei
Kuangfa Li
Xueli Pang
Bianqin Guo
Min Su
Yunxiu Huang
Nian Wang
Feihu Ji
Changli Zhong
Junhong Yang
Zhiqian Zhang
Yulin Jiang
Yifeng Liu
Tingmei Chen
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2016
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-016-0446-4

Other articles of this Issue 1/2016

Journal of Experimental & Clinical Cancer Research 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine