Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2016

Open Access 01-12-2016 | Research

Protein phosphatase 2A-B55δ enhances chemotherapy sensitivity of human hepatocellular carcinoma under the regulation of microRNA-133b

Authors: Qunying Zhuang, Tengjian Zhou, Chengyong He, Shili Zhang, Yang Qiu, Bing Luo, Ran Zhao, Hengchuan Liu, Yuchun Lin, Zhongning Lin

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2016

Login to get access

Abstract

Background

Hepatocellular carcinoma (HCC) remains a major public health problem worldwide. The identification of effective chemotherapeutic targets for advanced HCC patients is urgently required. In this study, we investigated the role of protein phosphatase 2A-B55δ subunit (PP2A-B55δ, encoded by the PPP2R2D gene) and related mechanisms affecting chemotherapy sensitivity of HCC.

Methods

Experimental approaches for measuring the levels of PPP2R2D mRNA and B55δ protein in HCC included bioinformatics analyses, quantitative real-time polymerase chain reaction (qRT-PCR), western blotting (WB), immunofluorescence and immunohistochemistry assays. Cell cycle, migration, colony formation, apoptosis, and cell proliferation assays in stable PPP2R2D-knockdown and -overexpression cell lines in vitro, and tumorigenicity assays in vivo, were performed to explore the function of B55δ in cisplatin (cDDP) chemotherapy of HCC. Bioinformatics prediction, luciferase reporter assays, qRT-PCR, WB, and cell cycle analyses were used to reveal the regulatory relationship between microRNA-133b (miR-133b) and PPP2R2D expression. miR-133b mimic and inhibitor were used to elucidate the regulatory mechanism.

Results

Our studies showed that PPP2R2D expression was down-regulated in both HCC tumors and HCC cell lines. Treatment with cDDP increased the amount of B55δ protein. Artificially increasing the expression of B55δ counteracted cyclin-dependent kinase 1 activation, modulated transitions of the cell cycle, and increased the suppressive effect of cDDP on cell migration, colony formation, apoptosis, and proliferation in vitro and tumor growth in vivo, thus enhancing therapeutic efficiency. In contrast, knockdown of B55δ partially inhibited the effect of cDDP chemotherapy. miR-133b was shown to regulate PPP2R2D expression by binding to the 3’-untranslated region of PPP2R2D mRNA. The miR-133b/PPP2R2D signaling pathway affects the effectiveness of cDDP chemotherapy.

Conclusions

PP2A-B55δ, regulated by miR-133b, enhances the sensitivity of HCC to cDDP chemotherapy. Our data indicate that PP2A-B55δ might be a novel and attractive target for increasing chemotherapy sensitivity of HCC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed
2.
go back to reference Kulik LM, Chokechanachaisakul A. Evaluation and management of hepatocellular carcinoma. Clin Liver Dis. 2015;19:23–43.CrossRefPubMed Kulik LM, Chokechanachaisakul A. Evaluation and management of hepatocellular carcinoma. Clin Liver Dis. 2015;19:23–43.CrossRefPubMed
3.
go back to reference Janssens V, Goris J, Van Hoof C. PP2A: the expected tumor suppressor. Curr Opin Genet Dev. 2005;15:34–41.CrossRefPubMed Janssens V, Goris J, Van Hoof C. PP2A: the expected tumor suppressor. Curr Opin Genet Dev. 2005;15:34–41.CrossRefPubMed
4.
go back to reference Seshacharyulu P, Pandey P, Datta K, Batra SK. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett. 2013;335:9–18.CrossRefPubMedPubMedCentral Seshacharyulu P, Pandey P, Datta K, Batra SK. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett. 2013;335:9–18.CrossRefPubMedPubMedCentral
6.
go back to reference Afonso-Grunz F, Muller S. Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci. 2015;72:3127–41.CrossRefPubMed Afonso-Grunz F, Muller S. Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci. 2015;72:3127–41.CrossRefPubMed
7.
go back to reference Marrone AK, Beland FA, Pogribny IP. The role for microRNAs in drug toxicity and in safety assessment. Expert Opin Drug Metab Toxicol. 2015;11:601–11.CrossRefPubMed Marrone AK, Beland FA, Pogribny IP. The role for microRNAs in drug toxicity and in safety assessment. Expert Opin Drug Metab Toxicol. 2015;11:601–11.CrossRefPubMed
8.
go back to reference Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol. 2010;11:252–63.CrossRefPubMed Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol. 2010;11:252–63.CrossRefPubMed
10.
go back to reference Gurtner A, Falcone E, Garibaldi F, Piaggio G. Dysregulation of microRNA biogenesis in cancer: the impact of mutant p53 on Drosha complex activity. J Exp Clin Cancer Res. 2016;35:45.CrossRefPubMedPubMedCentral Gurtner A, Falcone E, Garibaldi F, Piaggio G. Dysregulation of microRNA biogenesis in cancer: the impact of mutant p53 on Drosha complex activity. J Exp Clin Cancer Res. 2016;35:45.CrossRefPubMedPubMedCentral
13.
go back to reference Liao K, Xia B, Zhuang QY, Hou MJ, Zhang YJ, Luo B, et al. Parthenolide inhibits cancer stem-like side population of nasopharyngeal carcinoma cells via suppression of the NF-κB/COX-2 pathway. Theranostics. 2015;5:302–21.CrossRefPubMedPubMedCentral Liao K, Xia B, Zhuang QY, Hou MJ, Zhang YJ, Luo B, et al. Parthenolide inhibits cancer stem-like side population of nasopharyngeal carcinoma cells via suppression of the NF-κB/COX-2 pathway. Theranostics. 2015;5:302–21.CrossRefPubMedPubMedCentral
14.
go back to reference Udali S, Guarini P, Ruzzenente A, Ferrarini A, Guglielmi A, Lotto V, et al. DNA methylation and gene expression profiles show novel regulatory pathways in hepatocellular carcinoma. Clin Epigenetics. 2015;7:1–13.CrossRef Udali S, Guarini P, Ruzzenente A, Ferrarini A, Guglielmi A, Lotto V, et al. DNA methylation and gene expression profiles show novel regulatory pathways in hepatocellular carcinoma. Clin Epigenetics. 2015;7:1–13.CrossRef
15.
go back to reference Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Schwartz M, et al. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology. 2007;45:938–47.CrossRefPubMed Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Schwartz M, et al. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology. 2007;45:938–47.CrossRefPubMed
16.
go back to reference Villa E, Critelli R, Lei B, Marzocchi G, Camma C, Giannelli G, et al. Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from a prospective study. Gut. 2015;0:1–9. Villa E, Critelli R, Lei B, Marzocchi G, Camma C, Giannelli G, et al. Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from a prospective study. Gut. 2015;0:1–9.
17.
18.
go back to reference Dhanasekaran R, Limaye A, Cabrera R. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis, and therapeutics. Hepat Med. 2012;4:19–37.PubMedPubMedCentral Dhanasekaran R, Limaye A, Cabrera R. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis, and therapeutics. Hepat Med. 2012;4:19–37.PubMedPubMedCentral
19.
go back to reference Llovet JM, Villanueva A, Lachenmayer A, Finn RS. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol. 2015;12:436.CrossRefPubMed Llovet JM, Villanueva A, Lachenmayer A, Finn RS. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol. 2015;12:436.CrossRefPubMed
20.
go back to reference Chen C, Wang G. Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy. World J Hepatol. 2015;7:1964–70.CrossRefPubMedPubMedCentral Chen C, Wang G. Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy. World J Hepatol. 2015;7:1964–70.CrossRefPubMedPubMedCentral
21.
go back to reference Cristobal I, Manso R, Rincon R, Carames C, Senin C, Borrero A, et al. PP2A inhibition is a common event in colorectal cancer and its restoration using FTY720 shows promising therapeutic potential. Mol Cancer Ther. 2014;13:938–47.CrossRefPubMed Cristobal I, Manso R, Rincon R, Carames C, Senin C, Borrero A, et al. PP2A inhibition is a common event in colorectal cancer and its restoration using FTY720 shows promising therapeutic potential. Mol Cancer Ther. 2014;13:938–47.CrossRefPubMed
22.
go back to reference Sangodkar J, Mazhar S, Kastrinsky D, Ohlmeyer M, Narla G. Development of small molecule activators of protein phosphatase 2A for the treatment of lung cancer. Eur J Cancer. 2014;50:158–9.CrossRef Sangodkar J, Mazhar S, Kastrinsky D, Ohlmeyer M, Narla G. Development of small molecule activators of protein phosphatase 2A for the treatment of lung cancer. Eur J Cancer. 2014;50:158–9.CrossRef
24.
go back to reference Chien WW, Sun QY, Lee KL, Ding LW, Wuensche P, Torres-Fernandez LA, et al. Activation of protein phosphatase 2A tumor suppressor as potential treatment of pancreatic cancer. Mol Oncol. 2015;9:889–905.CrossRefPubMedPubMedCentral Chien WW, Sun QY, Lee KL, Ding LW, Wuensche P, Torres-Fernandez LA, et al. Activation of protein phosphatase 2A tumor suppressor as potential treatment of pancreatic cancer. Mol Oncol. 2015;9:889–905.CrossRefPubMedPubMedCentral
25.
go back to reference Rincon R, Cristobal I, Zazo S, Arpi O, Menendez S, Manso R, et al. PP2A inhibition determines poor outcome and doxorubicin resistance in early breast cancer and its activation shows promising therapeutic effects. Oncotarget. 2015;6:4299–314.CrossRefPubMedPubMedCentral Rincon R, Cristobal I, Zazo S, Arpi O, Menendez S, Manso R, et al. PP2A inhibition determines poor outcome and doxorubicin resistance in early breast cancer and its activation shows promising therapeutic effects. Oncotarget. 2015;6:4299–314.CrossRefPubMedPubMedCentral
26.
go back to reference Chen HF, Mai JR, Wan JX, Gao YF, Lin LN, Wang SZ, et al. Role of a novel functional variant in the PPP2R1A promoter on the regulation of PP2A-Aalpha and the risk of hepatocellular carcinoma. PLoS ONE. 2013;8:e59574.CrossRefPubMedPubMedCentral Chen HF, Mai JR, Wan JX, Gao YF, Lin LN, Wang SZ, et al. Role of a novel functional variant in the PPP2R1A promoter on the regulation of PP2A-Aalpha and the risk of hepatocellular carcinoma. PLoS ONE. 2013;8:e59574.CrossRefPubMedPubMedCentral
27.
28.
go back to reference Mochida S, Ikeo S, Gannon J, Hunt T. Regulated activity of PP2A-B55δ is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts. EMBO J. 2009;28:2777–85.CrossRefPubMedPubMedCentral Mochida S, Ikeo S, Gannon J, Hunt T. Regulated activity of PP2A-B55δ is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts. EMBO J. 2009;28:2777–85.CrossRefPubMedPubMedCentral
29.
go back to reference Krasinska L, Domingo-Sananes MR, Kapuy O, Parisis N, Harker B, Moorhead G, et al. Protein phosphatase 2A controls the order and dynamics of cell-cycle transitions. Mol Cell. 2011;44:437–50.CrossRefPubMed Krasinska L, Domingo-Sananes MR, Kapuy O, Parisis N, Harker B, Moorhead G, et al. Protein phosphatase 2A controls the order and dynamics of cell-cycle transitions. Mol Cell. 2011;44:437–50.CrossRefPubMed
30.
go back to reference Guichard C, Pedruzzi E, Fay M, Marie JC, Braut-Boucher F, Daniel F, et al. Dihydroxyphenylethanol induces apoptosis by activating serine/threonine protein phosphatase PP2A and promotes the endoplasmic reticulum stress response in human colon carcinoma cells. Carcinogenesis. 2006;27:1812–27.CrossRefPubMed Guichard C, Pedruzzi E, Fay M, Marie JC, Braut-Boucher F, Daniel F, et al. Dihydroxyphenylethanol induces apoptosis by activating serine/threonine protein phosphatase PP2A and promotes the endoplasmic reticulum stress response in human colon carcinoma cells. Carcinogenesis. 2006;27:1812–27.CrossRefPubMed
31.
go back to reference Garcia A, Cayla X, Guergnon J, Dessauge F, Hospital V, Rebollo MP, et al. Serine/threonine protein phosphatases PP1 and PP2A are key players in apoptosis. Biochimie. 2003;85:721–6.CrossRefPubMed Garcia A, Cayla X, Guergnon J, Dessauge F, Hospital V, Rebollo MP, et al. Serine/threonine protein phosphatases PP1 and PP2A are key players in apoptosis. Biochimie. 2003;85:721–6.CrossRefPubMed
32.
go back to reference Chen HF, Lin LN, Chen YX, Wan JX, Luo J, Zhang CZ, et al. Identification and functional analysis of variant haplotypes in the 5’-flanking region of protein phosphatase 2A-Bδ gene. PLoS ONE. 2012;7:e35524.CrossRefPubMedPubMedCentral Chen HF, Lin LN, Chen YX, Wan JX, Luo J, Zhang CZ, et al. Identification and functional analysis of variant haplotypes in the 5’-flanking region of protein phosphatase 2A-Bδ gene. PLoS ONE. 2012;7:e35524.CrossRefPubMedPubMedCentral
33.
go back to reference Yang N, Ekanem NR, Sakyi CA, Ray SD. Hepatocellular carcinoma and microRNA: new perspectives on therapeutics and diagnostics. Adv Drug Deliv Rev. 2015;81:62–74.CrossRefPubMed Yang N, Ekanem NR, Sakyi CA, Ray SD. Hepatocellular carcinoma and microRNA: new perspectives on therapeutics and diagnostics. Adv Drug Deliv Rev. 2015;81:62–74.CrossRefPubMed
34.
go back to reference Cheng Z, Wang HZ, Li XT, Wu ZW, Han Y, Li YY, et al. MicroRNA-184 inhibits cell proliferation and invasion, and specifically targets TNFAIP2 in Glioma. J Exp Clin Cancer Res. 2015;34:27.CrossRefPubMedPubMedCentral Cheng Z, Wang HZ, Li XT, Wu ZW, Han Y, Li YY, et al. MicroRNA-184 inhibits cell proliferation and invasion, and specifically targets TNFAIP2 in Glioma. J Exp Clin Cancer Res. 2015;34:27.CrossRefPubMedPubMedCentral
35.
go back to reference Zhao N, Jin LR, Fei GQ, Zheng ZY, Zhong CJ. Serum microRNA-133b is associated with low ceruloplasmin levels in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:1177–80.CrossRefPubMed Zhao N, Jin LR, Fei GQ, Zheng ZY, Zhong CJ. Serum microRNA-133b is associated with low ceruloplasmin levels in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:1177–80.CrossRefPubMed
36.
go back to reference Liu LX, Shao XY, Gao W, Zhang Z, Liu P, Wang RS, et al. MicroRNA-133b inhibits the growth of non-small-cell lung cancer by targeting the epidermal growth factor receptor. FEBS J. 2012;279:3800–12.CrossRefPubMed Liu LX, Shao XY, Gao W, Zhang Z, Liu P, Wang RS, et al. MicroRNA-133b inhibits the growth of non-small-cell lung cancer by targeting the epidermal growth factor receptor. FEBS J. 2012;279:3800–12.CrossRefPubMed
37.
go back to reference Zhou YF, Wu DY, Tao J, Qu P, Zhou ZD, Hou JQ. MicroRNA-133 inhibits cell proliferation, migration and invasion by targeting epidermal growth factor receptor and its downstream effector proteins in bladder cancer. Scand J Urol. 2013;47:423–32.CrossRefPubMed Zhou YF, Wu DY, Tao J, Qu P, Zhou ZD, Hou JQ. MicroRNA-133 inhibits cell proliferation, migration and invasion by targeting epidermal growth factor receptor and its downstream effector proteins in bladder cancer. Scand J Urol. 2013;47:423–32.CrossRefPubMed
38.
go back to reference Guo L, Bai H, Zou D, Hong T, Liu J, Huang J, et al. The role of microRNA-133b and its target gene FSCN1 in gastric cancer. J Exp Clin Cancer Res. 2014;33:99.CrossRefPubMedPubMedCentral Guo L, Bai H, Zou D, Hong T, Liu J, Huang J, et al. The role of microRNA-133b and its target gene FSCN1 in gastric cancer. J Exp Clin Cancer Res. 2014;33:99.CrossRefPubMedPubMedCentral
39.
go back to reference Akcakaya P, Ekelund S, Kolosenko I, Caramuta S, Ozata DM, Xie H, et al. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol. 2011;39:311–8.PubMed Akcakaya P, Ekelund S, Kolosenko I, Caramuta S, Ozata DM, Xie H, et al. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol. 2011;39:311–8.PubMed
40.
go back to reference Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C, et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature. 2015;518:107–10.CrossRefPubMedPubMedCentral Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C, et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature. 2015;518:107–10.CrossRefPubMedPubMedCentral
Metadata
Title
Protein phosphatase 2A-B55δ enhances chemotherapy sensitivity of human hepatocellular carcinoma under the regulation of microRNA-133b
Authors
Qunying Zhuang
Tengjian Zhou
Chengyong He
Shili Zhang
Yang Qiu
Bing Luo
Ran Zhao
Hengchuan Liu
Yuchun Lin
Zhongning Lin
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2016
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-016-0341-z

Other articles of this Issue 1/2016

Journal of Experimental & Clinical Cancer Research 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine