Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2015

Open Access 01-12-2015 | Research article

T-type calcium channel antagonists, mibefradil and NNC-55-0396 inhibit cell proliferation and induce cell apoptosis in leukemia cell lines

Authors: Weifeng Huang, Chunjing Lu, Yong Wu, Shou Ouyang, Yuanzhong Chen

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2015

Login to get access

Abstract

Background

T-type Ca2+ channels are often aberrantly expressed in different human cancers and participate in the regulation of cell cycle progression, proliferation and death. Methods: RT-PCR, Q-PCR, western blotting and whole-cell patch-clamp recording were employed to assess the expression of T-type Ca2+ channels in leukemia cell lines. The function of T-type Ca2+ channels in leukemia cell growth and the possible mechanism of the effect of T-type Ca2+ channel antagonists on cell proliferation and apoptosis were examined in T-lymphoma cell lines.

Results

We show that leukemia cell lines exhibited reduced cell growth when treated with T-type Ca2+ channel inhibitors, mibefradil and NNC-55-0396 in a concentration-dependent manner. Mechanistically, these inhibitors played a dual role on cell viability: (i) blunting proliferation, through a halt in the progression to the G1-S phase; and (ii) promoting cell apoptosis, partially dependent on the endoplasmic reticulum Ca2+ release. In addition, we observed a reduced phosphorylation of ERK1/2 in MOLT-4 cells in response to mibefradil and NNC-55-0396 treatment.

Conclusions

These results indicate that mibefradil and NNC-55-0396 regulate proliferation and apoptosis in T-type Ca2+ channel expressing leukemia cell lines and suggest a potential therapeutic target for leukemia.
Appendix
Available only for authorised users
Literature
3.
go back to reference Bergner A, Kellner J, Tufman A, Huber RM. Endoplasmic reticulum Ca2 + −homeostasis is altered in small and non-small cell lung cancer cell lines. J Exp Clin Cancer Res. 2009;28:25.CrossRefPubMedCentralPubMed Bergner A, Kellner J, Tufman A, Huber RM. Endoplasmic reticulum Ca2 + homeostasis is altered in small and non-small cell lung cancer cell lines. J Exp Clin Cancer Res. 2009;28:25.CrossRefPubMedCentralPubMed
4.
go back to reference Ciapa B, Pesando D, Wilding M, Whitaker M. Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels. Nature. 1994;368:875–8.CrossRefPubMed Ciapa B, Pesando D, Wilding M, Whitaker M. Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels. Nature. 1994;368:875–8.CrossRefPubMed
5.
go back to reference Choi DW. Ionic dependence of glutamate neurotoxicity. J Neurosci. 1987;7:369–79.PubMed Choi DW. Ionic dependence of glutamate neurotoxicity. J Neurosci. 1987;7:369–79.PubMed
6.
go back to reference Boynton AL, Whitfield JF, Isaacs RJ, Tremblay RG. Different extracellular calcium requirements for proliferation of nonneoplastic, preneoplastic, and neoplastic mouse cells. Cancer Res. 1977;37:2657–61.PubMed Boynton AL, Whitfield JF, Isaacs RJ, Tremblay RG. Different extracellular calcium requirements for proliferation of nonneoplastic, preneoplastic, and neoplastic mouse cells. Cancer Res. 1977;37:2657–61.PubMed
7.
go back to reference Toyota M, Ho C, Ohe-Toyota M, Baylin SB, Issa JP. Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5′CpG island in human tumors. Cancer Res. 1999;59:4535–41.PubMed Toyota M, Ho C, Ohe-Toyota M, Baylin SB, Issa JP. Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5′CpG island in human tumors. Cancer Res. 1999;59:4535–41.PubMed
8.
go back to reference Heo JH, Seo HN, Choe YJ, Kim S, Oh CR, Kim YD, et al. T-type Ca2+ channel blockers suppress the growth of human cancer cells. Bioorg Med Chem Lett. 2008;18:3899–901.CrossRefPubMed Heo JH, Seo HN, Choe YJ, Kim S, Oh CR, Kim YD, et al. T-type Ca2+ channel blockers suppress the growth of human cancer cells. Bioorg Med Chem Lett. 2008;18:3899–901.CrossRefPubMed
9.
go back to reference Li W, Zhang SL, Wang N, Zhang BB, Li M. Blockade of T-type Ca(2+) channels inhibits human ovarian cancer cell proliferation. Cancer Invest. 2011;29:339–46.CrossRefPubMed Li W, Zhang SL, Wang N, Zhang BB, Li M. Blockade of T-type Ca(2+) channels inhibits human ovarian cancer cell proliferation. Cancer Invest. 2011;29:339–46.CrossRefPubMed
10.
go back to reference Valerie NC, Dziegielewska B, Hosing AS, Augustin E, Gray LS, Brautigan DL, et al. Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells. Biochem Pharmacol. 2013;85:888–97.CrossRefPubMed Valerie NC, Dziegielewska B, Hosing AS, Augustin E, Gray LS, Brautigan DL, et al. Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells. Biochem Pharmacol. 2013;85:888–97.CrossRefPubMed
11.
go back to reference Zhang Y, Zhang J, Jiang D, Zhang D, Qian Z, Liu C, et al. Inhibition of T-type Ca(2+) channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br J Pharmacol. 2012;166:1247–60.CrossRefPubMedCentralPubMed Zhang Y, Zhang J, Jiang D, Zhang D, Qian Z, Liu C, et al. Inhibition of T-type Ca(2+) channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br J Pharmacol. 2012;166:1247–60.CrossRefPubMedCentralPubMed
12.
go back to reference Taylor JT, Huang L, Pottle JE, Liu K, Yang Y, Zeng X, et al. Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett. 2008;267:116–24.CrossRefPubMed Taylor JT, Huang L, Pottle JE, Liu K, Yang Y, Zeng X, et al. Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett. 2008;267:116–24.CrossRefPubMed
13.
go back to reference Lu F, Chen H, Zhou C, Liu S, Guo M, Chen P, et al. T-type Ca2+ channel expression in human esophageal carcinomas: a functional role in proliferation. Cell Calcium. 2008;43:49–58.CrossRefPubMedCentralPubMed Lu F, Chen H, Zhou C, Liu S, Guo M, Chen P, et al. T-type Ca2+ channel expression in human esophageal carcinomas: a functional role in proliferation. Cell Calcium. 2008;43:49–58.CrossRefPubMedCentralPubMed
14.
go back to reference Li Y, Liu S, Lu F, Zhang T, Chen H, Wu S, et al. A role of functional T-type Ca2+ channel in hepatocellular carcinoma cell proliferation. Oncol Rep. 2009;22:1229–35.PubMed Li Y, Liu S, Lu F, Zhang T, Chen H, Wu S, et al. A role of functional T-type Ca2+ channel in hepatocellular carcinoma cell proliferation. Oncol Rep. 2009;22:1229–35.PubMed
15.
go back to reference Das A, Pushparaj C, Bahí N, Sorolla A, Herreros J, Pamplona R, et al. Functional expression of voltage-gated calcium channels in human melanoma. Pigment Cell Melanoma Res. 2012;25:200–12.CrossRefPubMed Das A, Pushparaj C, Bahí N, Sorolla A, Herreros J, Pamplona R, et al. Functional expression of voltage-gated calcium channels in human melanoma. Pigment Cell Melanoma Res. 2012;25:200–12.CrossRefPubMed
16.
go back to reference Dziegielewska B, Brautigan DL, Larner JM, Dziegielewski J. T-type Ca2+ channel inhibition induces p53 dependent cell growth arrest and apoptosis through activation of p38-MAPK in colon cancer cells. Mol Cancer Res. 2014;12:348–58.CrossRefPubMed Dziegielewska B, Brautigan DL, Larner JM, Dziegielewski J. T-type Ca2+ channel inhibition induces p53 dependent cell growth arrest and apoptosis through activation of p38-MAPK in colon cancer cells. Mol Cancer Res. 2014;12:348–58.CrossRefPubMed
17.
go back to reference Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 2003;83:117–61.CrossRefPubMed Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 2003;83:117–61.CrossRefPubMed
18.
go back to reference Crunelli V, Toth TI, Cope DW, Blethyn K, Hughes SW. The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J Physiol. 2005;562:121–9.CrossRefPubMedCentralPubMed Crunelli V, Toth TI, Cope DW, Blethyn K, Hughes SW. The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J Physiol. 2005;562:121–9.CrossRefPubMedCentralPubMed
20.
go back to reference McCobb DP, Best PM, Beam KG. Development alters the expression of calcium currents in chick limb motorneurons. Neuron. 1989;2:1633–43.CrossRefPubMed McCobb DP, Best PM, Beam KG. Development alters the expression of calcium currents in chick limb motorneurons. Neuron. 1989;2:1633–43.CrossRefPubMed
21.
22.
go back to reference Xu XP, Best PM. Increase in T-type calcium current in atrial myocytes from adult rats with growth hormone-secreting tumors. Proc Natl Acad Sci U S A. 1990;87:4655–9.CrossRefPubMedCentralPubMed Xu XP, Best PM. Increase in T-type calcium current in atrial myocytes from adult rats with growth hormone-secreting tumors. Proc Natl Acad Sci U S A. 1990;87:4655–9.CrossRefPubMedCentralPubMed
23.
go back to reference Mishra SK, Hermsmeyer K. Selective inhibition of T-type Ca2+ channels by Ro 40–5967. Circ Res. 1994;75:144–8.CrossRefPubMed Mishra SK, Hermsmeyer K. Selective inhibition of T-type Ca2+ channels by Ro 40–5967. Circ Res. 1994;75:144–8.CrossRefPubMed
24.
go back to reference Huang L, Keyser BM, Tagmose TM, Hansen JB, Taylor JT, Zhuang H, et al. NNC 55–0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels. J Pharmacol Exp Ther. 2004;309:193–9.CrossRefPubMed Huang L, Keyser BM, Tagmose TM, Hansen JB, Taylor JT, Zhuang H, et al. NNC 550396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels. J Pharmacol Exp Ther. 2004;309:193–9.CrossRefPubMed
25.
go back to reference Roger S, Rollin J, Barascu A, Besson P, Raynal PI, Iochmann S, et al. Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. Int J Biochem Cell Biol. 2007;39:774–86.CrossRefPubMed Roger S, Rollin J, Barascu A, Besson P, Raynal PI, Iochmann S, et al. Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. Int J Biochem Cell Biol. 2007;39:774–86.CrossRefPubMed
26.
go back to reference Zhou B, Chen H, Wei D, Kuang Y, Zhao X, Li G, et al. A novel miR-219-SMC4-JAK2/Stat3 regulatory pathway in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2014;33:55.CrossRefPubMedCentralPubMed Zhou B, Chen H, Wei D, Kuang Y, Zhao X, Li G, et al. A novel miR-219-SMC4-JAK2/Stat3 regulatory pathway in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2014;33:55.CrossRefPubMedCentralPubMed
27.
go back to reference Huang WF, Ouyang S, Li SY, Lin YF, Ouyang H, Zhang H, et al. Effect of quercetin on colon contractility and L-type Ca(2+) channels in colon smooth muscle of guinea-pig. Sheng Li Xue Bao. 2009;61:567–76.PubMed Huang WF, Ouyang S, Li SY, Lin YF, Ouyang H, Zhang H, et al. Effect of quercetin on colon contractility and L-type Ca(2+) channels in colon smooth muscle of guinea-pig. Sheng Li Xue Bao. 2009;61:567–76.PubMed
28.
go back to reference Kotturi MF, Carlow DA, Lee JC, Ziltener HJ, Jefferies WA. Identification and functional characterization of voltage-dependent calcium channels in T lymphocytes. J Biol Chem. 2003;278:46949–60.CrossRefPubMed Kotturi MF, Carlow DA, Lee JC, Ziltener HJ, Jefferies WA. Identification and functional characterization of voltage-dependent calcium channels in T lymphocytes. J Biol Chem. 2003;278:46949–60.CrossRefPubMed
29.
go back to reference Atherfold PA, Norris MS, Robinson PJ, Gelfand EW, Franklin RA. Calcium-induced ERK activation in human T lymphocytes. Mol Immunol. 1999;36:543–9.CrossRefPubMed Atherfold PA, Norris MS, Robinson PJ, Gelfand EW, Franklin RA. Calcium-induced ERK activation in human T lymphocytes. Mol Immunol. 1999;36:543–9.CrossRefPubMed
30.
go back to reference Franklin RA, Atherfold PA, McCubrey JA. Calcium-induced ERK activation in human T lymphocytes occurs via p56 (Lck) and CaM-kinase. Mol Immunol. 2000;37:675–83.CrossRefPubMed Franklin RA, Atherfold PA, McCubrey JA. Calcium-induced ERK activation in human T lymphocytes occurs via p56 (Lck) and CaM-kinase. Mol Immunol. 2000;37:675–83.CrossRefPubMed
31.
go back to reference Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4:552–65.CrossRefPubMed Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4:552–65.CrossRefPubMed
32.
go back to reference Orrenius S, Nicotera P. The calcium ion and cell death. J Neural Transm Suppl. 1994;43:1–11.PubMed Orrenius S, Nicotera P. The calcium ion and cell death. J Neural Transm Suppl. 1994;43:1–11.PubMed
33.
34.
go back to reference Rossier MF. T channels and steroid biosynthesis: in search of a link with mitochondria. Cell Calcium. 2006;40:155–64.CrossRefPubMed Rossier MF. T channels and steroid biosynthesis: in search of a link with mitochondria. Cell Calcium. 2006;40:155–64.CrossRefPubMed
35.
go back to reference Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle KF, et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol. 2006;174:915–21.CrossRefPubMedCentralPubMed Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle KF, et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol. 2006;174:915–21.CrossRefPubMedCentralPubMed
36.
go back to reference Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 2003;300:135–9.CrossRefPubMed Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 2003;300:135–9.CrossRefPubMed
37.
go back to reference Whitfield JF. Calcium signals and cancer. Crit Rev Oncog. 1992;3:55–90.PubMed Whitfield JF. Calcium signals and cancer. Crit Rev Oncog. 1992;3:55–90.PubMed
38.
go back to reference Taylor JT, Zeng XB, Pottle JE, Lee K, Wang AR, Yi SG, et al. Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol. 2008;14:4984–91.CrossRefPubMedCentralPubMed Taylor JT, Zeng XB, Pottle JE, Lee K, Wang AR, Yi SG, et al. Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol. 2008;14:4984–91.CrossRefPubMedCentralPubMed
39.
go back to reference Latour I, Louw DF, Beedle AM, Hamid J, Sutherland GR, Zamponi GW. Expression of T-type calcium channel splice variants in human glioma. Glia. 2004;48:112–9.CrossRefPubMed Latour I, Louw DF, Beedle AM, Hamid J, Sutherland GR, Zamponi GW. Expression of T-type calcium channel splice variants in human glioma. Glia. 2004;48:112–9.CrossRefPubMed
40.
go back to reference Panner A, Wurster RD. T-type calcium channels and tumor proliferation. Cell Calcium. 2006;40:253–9.CrossRefPubMed Panner A, Wurster RD. T-type calcium channels and tumor proliferation. Cell Calcium. 2006;40:253–9.CrossRefPubMed
41.
go back to reference Ohkubo T, Yamazaki J. T-type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells. Int J Oncol. 2012;41:267–75.PubMed Ohkubo T, Yamazaki J. T-type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells. Int J Oncol. 2012;41:267–75.PubMed
42.
go back to reference Kahl CR, Means AR. Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev. 2003;24:719–36.CrossRefPubMed Kahl CR, Means AR. Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev. 2003;24:719–36.CrossRefPubMed
43.
go back to reference Panner A, Cribbs LL, Zainelli GM, Origitano TC, Singh S, Wurster RD. Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells. Cell Calcium. 2005;37:105–19.CrossRefPubMed Panner A, Cribbs LL, Zainelli GM, Origitano TC, Singh S, Wurster RD. Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells. Cell Calcium. 2005;37:105–19.CrossRefPubMed
44.
go back to reference Steinhardt RA, Alderton J. Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo. Nature. 1988;332:364–6.CrossRefPubMed Steinhardt RA, Alderton J. Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo. Nature. 1988;332:364–6.CrossRefPubMed
45.
go back to reference Hsu YF, Lee TS, Lin SY, Hsu SP, Juan SH, Hsu YH, et al. Involvement of Ras/Raf-1/ERK actions in the magnolol-induced upregulation of p21 and cell-cycle arrest in colon cancer cells. Mol Carcinog. 2007;46:275–83.CrossRefPubMed Hsu YF, Lee TS, Lin SY, Hsu SP, Juan SH, Hsu YH, et al. Involvement of Ras/Raf-1/ERK actions in the magnolol-induced upregulation of p21 and cell-cycle arrest in colon cancer cells. Mol Carcinog. 2007;46:275–83.CrossRefPubMed
46.
go back to reference Tsukamoto I, Kojo S. Effect of calcium channel blockers and trifluoperazine on rat liver regeneration. Eur J Pharmacol. 1987;144:159–62.CrossRefPubMed Tsukamoto I, Kojo S. Effect of calcium channel blockers and trifluoperazine on rat liver regeneration. Eur J Pharmacol. 1987;144:159–62.CrossRefPubMed
47.
go back to reference Fan H, Villegas C, Wright JA. Ribonucleotide reductase R2 component is a novel malignancy determinant that cooperates with activated oncogenes to determine transformation and malignant potential. Proc Natl Acad Sci U S A. 1996;93:14036–40.CrossRefPubMedCentralPubMed Fan H, Villegas C, Wright JA. Ribonucleotide reductase R2 component is a novel malignancy determinant that cooperates with activated oncogenes to determine transformation and malignant potential. Proc Natl Acad Sci U S A. 1996;93:14036–40.CrossRefPubMedCentralPubMed
48.
go back to reference Son YK, da Hong H, Li H, Kim DJ, Na SH, Park H, et al. The Ca2+ channel inhibitor NNC 55–0396 inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. J Pharmacol Sci. 2014;125:312–9.CrossRefPubMed Son YK, da Hong H, Li H, Kim DJ, Na SH, Park H, et al. The Ca2+ channel inhibitor NNC 55–0396 inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. J Pharmacol Sci. 2014;125:312–9.CrossRefPubMed
49.
go back to reference Rizzuto R, Pinton P, Ferrari D, Chami M, Szabadkai G, Magalhaes PJ, et al. Calcium and apoptosis: facts and hypotheses. Oncogene. 2003;22:8619–27.CrossRefPubMed Rizzuto R, Pinton P, Ferrari D, Chami M, Szabadkai G, Magalhaes PJ, et al. Calcium and apoptosis: facts and hypotheses. Oncogene. 2003;22:8619–27.CrossRefPubMed
50.
go back to reference Eberhard M, Miyagawa K, Hermsmeyer K, Erne P. Effects of mibefradil on intracellular Ca2+ release in cultured rat cardiac fibroblasts and human platelets. Naunyn Schmiedebergs Arch Pharmacol. 1995;353:94–101.CrossRefPubMed Eberhard M, Miyagawa K, Hermsmeyer K, Erne P. Effects of mibefradil on intracellular Ca2+ release in cultured rat cardiac fibroblasts and human platelets. Naunyn Schmiedebergs Arch Pharmacol. 1995;353:94–101.CrossRefPubMed
51.
go back to reference Das A, Pushparaj C, Herreros J, Nager M, Vilella R, Portero M, et al. T-type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells. Pigment Cell Melanoma Res. 2013;26:874–85.CrossRefPubMed Das A, Pushparaj C, Herreros J, Nager M, Vilella R, Portero M, et al. T-type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells. Pigment Cell Melanoma Res. 2013;26:874–85.CrossRefPubMed
52.
go back to reference Halestrap AP. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans. 2006;34:232–7.CrossRefPubMed Halestrap AP. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans. 2006;34:232–7.CrossRefPubMed
Metadata
Title
T-type calcium channel antagonists, mibefradil and NNC-55-0396 inhibit cell proliferation and induce cell apoptosis in leukemia cell lines
Authors
Weifeng Huang
Chunjing Lu
Yong Wu
Shou Ouyang
Yuanzhong Chen
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2015
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-015-0171-4

Other articles of this Issue 1/2015

Journal of Experimental & Clinical Cancer Research 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine