Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2014

Open Access 01-12-2014 | Research article

Histone acetyltransferase inhibitor II induces apoptosis in glioma cell lines via the p53 signaling pathway

Authors: Li-Xiao Xu, Zhi-Heng Li, Yan-Fang Tao, Rong-Hu Li, Fang Fang, He Zhao, Gang Li, Yan-Hong Li, Jian Wang, Xing Feng, Jian Pan

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2014

Login to get access

Abstract

Background

Histone acetyltransferase (HAT) inhibitors can inhibit proliferation and induce apoptosis in cancer cell lines. The novel cell-permeable p300/CREB-binding protein (CBP)-selective HAT inhibitor HATi II can reduce histone H3 acetylation and induce chromatin condensation in HeLa cells. Here, we examined the effects and mechanism of action of HATi II in glioma cell lines.

Methods

Cell viability was assessed using the CCK-8 assay. Cell cycle analysis was performed using flow cytometry. Apoptosis was evaluated using Annexin V staining and flow cytometry, Hoechst 33342 staining and the TUNEL assay. Expression and cleavage of caspase-3, caspase-9 and poly ADP-ribose polymerase (PARP) were assessed by Western blotting. Statistical analysis was performed using two-tailed Student’s t-tests. The gene expression profiles of U251 glioma cells treated with HATi II or DMSO were analyzed using the Arraystar Human 8 x 60 K LncRNA/mRNA expression array; data was analyzed using MEV (Multi Experiment View) cluster software. Datasets representing genes with altered expression profiles (≥2-fold) derived from the cluster analyses were subjected to gene ontology and pathway analysis.

Results

HATi II inhibited the proliferation of U251, U87, HS683 and SHG44 cells in a dose-dependent manner. HATi II induced cell cycle arrest at the G2/M phase, and induced significant levels of apoptosis, apoptotic body formation and DNA fragmentation in HATi II-treated U251 and SHG44 cells. HATi II induced cleavage of caspase-3, caspase-9 and PARP in U251 and SHG44 cells. In HATi II-treated U251 cells, 965 genes were upregulated, 984 genes were downregulated and 3492/33327 lncRNAs were differentially expressed. GO analysis showed the differentially expressed genes with known functions are involved in a variety of processes; alcoholism, p53 signaling pathway, cytokine-cytokine receptor interaction and transcriptional mis-regulation in cancer were the four most significant pathways. Upregulation of p53 signaling pathway-related genes in HATi II-treated cells was confirmed by quantitative RT-PCR and Western blotting.

Conclusions

HATi II inhibits proliferation and induces apoptosis via the caspase-dependent pathway in human glioma cell lines, possibly by activating the p53 signaling pathway. HATi II deserves further investigation as a novel treatment for glioma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alebouyeh M, Moussavi F: Occurrence of overwhelming gram-negative infections in splenectomised patients with thalassaemia major. Eur J Pediatr. 2003, 162 (9): 637-638. 10.1007/s00431-003-1253-4.CrossRefPubMed Alebouyeh M, Moussavi F: Occurrence of overwhelming gram-negative infections in splenectomised patients with thalassaemia major. Eur J Pediatr. 2003, 162 (9): 637-638. 10.1007/s00431-003-1253-4.CrossRefPubMed
2.
go back to reference Echevarria ME, Fangusaro J, Goldman S: Pediatric central nervous system germ cell tumors: a review. Oncologist. 2008, 13 (6): 690-699. 10.1634/theoncologist.2008-0037.CrossRefPubMed Echevarria ME, Fangusaro J, Goldman S: Pediatric central nervous system germ cell tumors: a review. Oncologist. 2008, 13 (6): 690-699. 10.1634/theoncologist.2008-0037.CrossRefPubMed
3.
go back to reference Qaddoumi I, Sultan I, Gajjar A: Outcome and prognostic features in pediatric gliomas: a review of 6212 cases from the Surveillance, Epidemiology, and End Results database. Cancer. 2009, 115 (24): 5761-5770. 10.1002/cncr.24663.PubMedCentralCrossRefPubMed Qaddoumi I, Sultan I, Gajjar A: Outcome and prognostic features in pediatric gliomas: a review of 6212 cases from the Surveillance, Epidemiology, and End Results database. Cancer. 2009, 115 (24): 5761-5770. 10.1002/cncr.24663.PubMedCentralCrossRefPubMed
4.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114 (2): 97-109. 10.1007/s00401-007-0243-4.PubMedCentralCrossRefPubMed Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114 (2): 97-109. 10.1007/s00401-007-0243-4.PubMedCentralCrossRefPubMed
5.
go back to reference Nomura M, Narita Y, Miyakita Y, Ohno M, Fukushima S, Maruyama T, Muragaki Y, Shibui S: Clinical presentation of anaplastic large-cell lymphoma in the central nervous system. Molecular and clinical oncology. 2013, 1 (4): 655-660.PubMedCentralPubMed Nomura M, Narita Y, Miyakita Y, Ohno M, Fukushima S, Maruyama T, Muragaki Y, Shibui S: Clinical presentation of anaplastic large-cell lymphoma in the central nervous system. Molecular and clinical oncology. 2013, 1 (4): 655-660.PubMedCentralPubMed
6.
go back to reference Wen PY, Kesari S: Malignant gliomas in adults. N Engl J Med. 2008, 359 (5): 492-507. 10.1056/NEJMra0708126.CrossRefPubMed Wen PY, Kesari S: Malignant gliomas in adults. N Engl J Med. 2008, 359 (5): 492-507. 10.1056/NEJMra0708126.CrossRefPubMed
7.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005, 352 (10): 987-996. 10.1056/NEJMoa043330.CrossRefPubMed Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005, 352 (10): 987-996. 10.1056/NEJMoa043330.CrossRefPubMed
8.
go back to reference Sathornsumetee S, Rich JN: New treatment strategies for malignant gliomas. Expert Rev Anticancer Ther. 2006, 6 (7): 1087-1104. 10.1586/14737140.6.7.1087.CrossRefPubMed Sathornsumetee S, Rich JN: New treatment strategies for malignant gliomas. Expert Rev Anticancer Ther. 2006, 6 (7): 1087-1104. 10.1586/14737140.6.7.1087.CrossRefPubMed
9.
go back to reference Minniti G, Muni R, Lanzetta G, Marchetti P, Enrici RM: Chemotherapy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res. 2009, 29 (12): 5171-5184.PubMed Minniti G, Muni R, Lanzetta G, Marchetti P, Enrici RM: Chemotherapy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res. 2009, 29 (12): 5171-5184.PubMed
10.
go back to reference Strahl BD, Allis CD: The language of covalent histone modifications. Nature. 2000, 403 (6765): 41-45. 10.1038/47412.CrossRefPubMed Strahl BD, Allis CD: The language of covalent histone modifications. Nature. 2000, 403 (6765): 41-45. 10.1038/47412.CrossRefPubMed
11.
go back to reference Shahbazian MD, Grunstein M: Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 2007, 76: 75-100. 10.1146/annurev.biochem.76.052705.162114.CrossRefPubMed Shahbazian MD, Grunstein M: Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 2007, 76: 75-100. 10.1146/annurev.biochem.76.052705.162114.CrossRefPubMed
12.
go back to reference Hagelkruys A, Sawicka A, Rennmayr M, Seiser C: The biology of HDAC in cancer: the nuclear and epigenetic components. Handb Exp Pharmacol. 2011, 206: 13-37. 10.1007/978-3-642-21631-2_2.CrossRefPubMed Hagelkruys A, Sawicka A, Rennmayr M, Seiser C: The biology of HDAC in cancer: the nuclear and epigenetic components. Handb Exp Pharmacol. 2011, 206: 13-37. 10.1007/978-3-642-21631-2_2.CrossRefPubMed
13.
go back to reference Ropero S, Esteller M: The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007, 1 (1): 19-25. 10.1016/j.molonc.2007.01.001.CrossRefPubMed Ropero S, Esteller M: The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007, 1 (1): 19-25. 10.1016/j.molonc.2007.01.001.CrossRefPubMed
14.
go back to reference Roth SY, Denu JM, Allis CD: Histone acetyltransferases. Annu Rev Biochem. 2001, 70: 81-120. 10.1146/annurev.biochem.70.1.81.CrossRefPubMed Roth SY, Denu JM, Allis CD: Histone acetyltransferases. Annu Rev Biochem. 2001, 70: 81-120. 10.1146/annurev.biochem.70.1.81.CrossRefPubMed
15.
go back to reference Yang XJ: The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 2004, 32 (3): 959-976. 10.1093/nar/gkh252.PubMedCentralCrossRefPubMed Yang XJ: The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 2004, 32 (3): 959-976. 10.1093/nar/gkh252.PubMedCentralCrossRefPubMed
16.
go back to reference Marks PA, Richon VM, Rifkind RA: Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000, 92 (15): 1210-1216. 10.1093/jnci/92.15.1210.CrossRefPubMed Marks PA, Richon VM, Rifkind RA: Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000, 92 (15): 1210-1216. 10.1093/jnci/92.15.1210.CrossRefPubMed
18.
go back to reference Witt O, Deubzer HE, Lodrini M, Milde T, Oehme I: Targeting histone deacetylases in neuroblastoma. Curr Pharm Des. 2009, 15 (4): 436-447. 10.2174/138161209787315774.CrossRefPubMed Witt O, Deubzer HE, Lodrini M, Milde T, Oehme I: Targeting histone deacetylases in neuroblastoma. Curr Pharm Des. 2009, 15 (4): 436-447. 10.2174/138161209787315774.CrossRefPubMed
19.
go back to reference Eliseeva ED, Valkov V, Jung M, Jung MO: Characterization of novel inhibitors of histone acetyltransferases. Mol Cancer Ther. 2007, 6 (9): 2391-2398. 10.1158/1535-7163.MCT-07-0159.CrossRefPubMed Eliseeva ED, Valkov V, Jung M, Jung MO: Characterization of novel inhibitors of histone acetyltransferases. Mol Cancer Ther. 2007, 6 (9): 2391-2398. 10.1158/1535-7163.MCT-07-0159.CrossRefPubMed
20.
go back to reference Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK: Small molecule modulators of histone acetyltransferase p300. J Biol Chem. 2003, 278 (21): 19134-19140. 10.1074/jbc.M301580200.CrossRefPubMed Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK: Small molecule modulators of histone acetyltransferase p300. J Biol Chem. 2003, 278 (21): 19134-19140. 10.1074/jbc.M301580200.CrossRefPubMed
21.
go back to reference Lenoci A, Tomassi S, Conte M, Benedetti R, Rodriguez V, Carradori S, Secci D, Castellano S, Sbardella G, Filetici P, Novellino E, Altucci L, Rotili D, Mai A: Quinoline-based p300 histone acetyltransferase inhibitors with pro-apoptotic activity in human leukemia U937 cells. ChemMedChem. 2014, 9 (3): 542-548. 10.1002/cmdc.201300536.CrossRefPubMed Lenoci A, Tomassi S, Conte M, Benedetti R, Rodriguez V, Carradori S, Secci D, Castellano S, Sbardella G, Filetici P, Novellino E, Altucci L, Rotili D, Mai A: Quinoline-based p300 histone acetyltransferase inhibitors with pro-apoptotic activity in human leukemia U937 cells. ChemMedChem. 2014, 9 (3): 542-548. 10.1002/cmdc.201300536.CrossRefPubMed
22.
go back to reference Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA, Crump NT, Hazzalin CA, Liszczak G, Yuan H, Larocca C, Saldanha SA, Abagyan R, Sun Y, Meyers DJ, Marmorstein R, Mahadevan LC, Alani RM, Cole PA: Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol. 2010, 17 (5): 471-482. 10.1016/j.chembiol.2010.03.006.PubMedCentralCrossRefPubMed Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA, Crump NT, Hazzalin CA, Liszczak G, Yuan H, Larocca C, Saldanha SA, Abagyan R, Sun Y, Meyers DJ, Marmorstein R, Mahadevan LC, Alani RM, Cole PA: Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol. 2010, 17 (5): 471-482. 10.1016/j.chembiol.2010.03.006.PubMedCentralCrossRefPubMed
23.
go back to reference Goodman RH, Smolik S: CBP/p300 in cell growth, transformation, and development. Genes Dev. 2000, 14 (13): 1553-1577.PubMed Goodman RH, Smolik S: CBP/p300 in cell growth, transformation, and development. Genes Dev. 2000, 14 (13): 1553-1577.PubMed
24.
go back to reference Bandyopadhyay D, Okan NA, Bales E, Nascimento L, Cole PA, Medrano EE: Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res. 2002, 62 (21): 6231-6239.PubMed Bandyopadhyay D, Okan NA, Bales E, Nascimento L, Cole PA, Medrano EE: Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res. 2002, 62 (21): 6231-6239.PubMed
25.
go back to reference Santer FR, Hoschele PP, Oh SJ, Erb HH, Bouchal J, Cavarretta IT, Parson W, Meyers DJ, Cole PA, Culig Z: Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Mol Cancer Ther. 2011, 10 (9): 1644-1655. 10.1158/1535-7163.MCT-11-0182.CrossRefPubMed Santer FR, Hoschele PP, Oh SJ, Erb HH, Bouchal J, Cavarretta IT, Parson W, Meyers DJ, Cole PA, Culig Z: Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Mol Cancer Ther. 2011, 10 (9): 1644-1655. 10.1158/1535-7163.MCT-11-0182.CrossRefPubMed
26.
go back to reference Ait-Si-Ali S, Polesskaya A, Filleur S, Ferreira R, Duquet A, Robin P, Vervish A, Trouche D, Cabon F, Harel-Bellan A: CBP/p300 histone acetyl-transferase activity is important for the G1/S transition. Oncogene. 2000, 19 (20): 2430-2437. 10.1038/sj.onc.1203562.CrossRefPubMed Ait-Si-Ali S, Polesskaya A, Filleur S, Ferreira R, Duquet A, Robin P, Vervish A, Trouche D, Cabon F, Harel-Bellan A: CBP/p300 histone acetyl-transferase activity is important for the G1/S transition. Oncogene. 2000, 19 (20): 2430-2437. 10.1038/sj.onc.1203562.CrossRefPubMed
27.
go back to reference Iyer NG, Xian J, Chin SF, Bannister AJ, Daigo Y, Aparicio S, Kouzarides T, Caldas C: p300 is required for orderly G1/S transition in human cancer cells. Oncogene. 2007, 26 (1): 21-29. 10.1038/sj.onc.1209771.CrossRefPubMed Iyer NG, Xian J, Chin SF, Bannister AJ, Daigo Y, Aparicio S, Kouzarides T, Caldas C: p300 is required for orderly G1/S transition in human cancer cells. Oncogene. 2007, 26 (1): 21-29. 10.1038/sj.onc.1209771.CrossRefPubMed
28.
go back to reference Yan G, Eller MS, Elm C, Larocca CA, Ryu B, Panova IP, Dancy BM, Bowers EM, Meyers D, Lareau L, Cole PA, Taverna SD, Alani RM: Selective inhibition of p300 HAT blocks cell cycle progression, induces cellular senescence, and inhibits the DNA damage response in melanoma cells. J Invest Dermatol. 2013, 133 (10): 2444-2452. 10.1038/jid.2013.187.PubMedCentralCrossRefPubMed Yan G, Eller MS, Elm C, Larocca CA, Ryu B, Panova IP, Dancy BM, Bowers EM, Meyers D, Lareau L, Cole PA, Taverna SD, Alani RM: Selective inhibition of p300 HAT blocks cell cycle progression, induces cellular senescence, and inhibits the DNA damage response in melanoma cells. J Invest Dermatol. 2013, 133 (10): 2444-2452. 10.1038/jid.2013.187.PubMedCentralCrossRefPubMed
29.
go back to reference Plati J, Bucur O, Khosravi-Far R: Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb). 2011, 3 (4): 279-296. 10.1039/c0ib00144a.CrossRef Plati J, Bucur O, Khosravi-Far R: Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb). 2011, 3 (4): 279-296. 10.1039/c0ib00144a.CrossRef
31.
go back to reference Chaitanya GV, Steven AJ, Babu PP: PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal: CCS. 2010, 8: 31-10.1186/1478-811X-8-31.PubMedCentralCrossRefPubMed Chaitanya GV, Steven AJ, Babu PP: PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal: CCS. 2010, 8: 31-10.1186/1478-811X-8-31.PubMedCentralCrossRefPubMed
32.
go back to reference Coffey K, Blackburn TJ, Cook S, Golding BT, Griffin RJ, Hardcastle IR, Hewitt L, Huberman K, McNeill HV, Newell DR, Roche C, Ryan-Munden CA, Watson A, Robson CN: Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS One. 2012, 7 (10): e45539-10.1371/journal.pone.0045539.PubMedCentralCrossRefPubMed Coffey K, Blackburn TJ, Cook S, Golding BT, Griffin RJ, Hardcastle IR, Hewitt L, Huberman K, McNeill HV, Newell DR, Roche C, Ryan-Munden CA, Watson A, Robson CN: Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS One. 2012, 7 (10): e45539-10.1371/journal.pone.0045539.PubMedCentralCrossRefPubMed
33.
go back to reference Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY: A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011, 472 (7341): 120-124. 10.1038/nature09819.PubMedCentralCrossRefPubMed Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY: A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011, 472 (7341): 120-124. 10.1038/nature09819.PubMedCentralCrossRefPubMed
34.
go back to reference Huang J, Teng L, Liu T, Li L, Chen D, Li F, Xu LG, Zhai Z, Shu HB: Identification of a novel serine/threonine kinase that inhibits TNF-induced NF-kappaB activation and p53-induced transcription. Biochem Biophys Res Commun. 2003, 309 (4): 774-778. 10.1016/j.bbrc.2003.08.069.CrossRefPubMed Huang J, Teng L, Liu T, Li L, Chen D, Li F, Xu LG, Zhai Z, Shu HB: Identification of a novel serine/threonine kinase that inhibits TNF-induced NF-kappaB activation and p53-induced transcription. Biochem Biophys Res Commun. 2003, 309 (4): 774-778. 10.1016/j.bbrc.2003.08.069.CrossRefPubMed
35.
go back to reference Wu YH, Shih SF, Lin JY: Ricin triggers apoptotic morphological changes through caspase-3 cleavage of BAT3. J Biol Chem. 2004, 279 (18): 19264-19275. 10.1074/jbc.M307049200.CrossRefPubMed Wu YH, Shih SF, Lin JY: Ricin triggers apoptotic morphological changes through caspase-3 cleavage of BAT3. J Biol Chem. 2004, 279 (18): 19264-19275. 10.1074/jbc.M307049200.CrossRefPubMed
36.
go back to reference Sasaki T, Gan EC, Wakeham A, Kornbluth S, Mak TW, Okada H: HLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53. Gene Dev. 2007, 21 (7): 848-861. 10.1101/gad.1534107.PubMedCentralCrossRefPubMed Sasaki T, Gan EC, Wakeham A, Kornbluth S, Mak TW, Okada H: HLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53. Gene Dev. 2007, 21 (7): 848-861. 10.1101/gad.1534107.PubMedCentralCrossRefPubMed
37.
go back to reference Baksh S, Tommasi S, Fenton S, Yu VC, Martins LM, Pfeifer GP, Latif F, Downward J, Neel BG: The tumor suppressor RASSF1A and MAP-1 link death receptor signaling to Bax conformational change and cell death. Mol Cell. 2005, 18 (6): 637-650. 10.1016/j.molcel.2005.05.010.CrossRefPubMed Baksh S, Tommasi S, Fenton S, Yu VC, Martins LM, Pfeifer GP, Latif F, Downward J, Neel BG: The tumor suppressor RASSF1A and MAP-1 link death receptor signaling to Bax conformational change and cell death. Mol Cell. 2005, 18 (6): 637-650. 10.1016/j.molcel.2005.05.010.CrossRefPubMed
39.
go back to reference Monte M, Benetti R, Buscemi G, Sandy P, Del Sal G, Schneider C: The cell cycle-regulated protein human GTSE-1 controls DNA damage-induced apoptosis by affecting p53 function. J Biol Chem. 2003, 278 (32): 30356-30364. 10.1074/jbc.M302902200.CrossRefPubMed Monte M, Benetti R, Buscemi G, Sandy P, Del Sal G, Schneider C: The cell cycle-regulated protein human GTSE-1 controls DNA damage-induced apoptosis by affecting p53 function. J Biol Chem. 2003, 278 (32): 30356-30364. 10.1074/jbc.M302902200.CrossRefPubMed
40.
go back to reference Nicholls CD, Shields MA, Lee PW, Robbins SM, Beattie TL: UV-dependent alternative splicing uncouples p53 activity and PIG3 gene function through rapid proteolytic degradation. J Biol Chem. 2004, 279 (23): 24171-24178. 10.1074/jbc.M401049200.CrossRefPubMed Nicholls CD, Shields MA, Lee PW, Robbins SM, Beattie TL: UV-dependent alternative splicing uncouples p53 activity and PIG3 gene function through rapid proteolytic degradation. J Biol Chem. 2004, 279 (23): 24171-24178. 10.1074/jbc.M401049200.CrossRefPubMed
41.
go back to reference Gu W, Roeder RG: Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997, 90 (4): 595-606. 10.1016/S0092-8674(00)80521-8.CrossRefPubMed Gu W, Roeder RG: Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997, 90 (4): 595-606. 10.1016/S0092-8674(00)80521-8.CrossRefPubMed
Metadata
Title
Histone acetyltransferase inhibitor II induces apoptosis in glioma cell lines via the p53 signaling pathway
Authors
Li-Xiao Xu
Zhi-Heng Li
Yan-Fang Tao
Rong-Hu Li
Fang Fang
He Zhao
Gang Li
Yan-Hong Li
Jian Wang
Xing Feng
Jian Pan
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2014
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-014-0108-3

Other articles of this Issue 1/2014

Journal of Experimental & Clinical Cancer Research 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine