Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2014

Open Access 01-12-2014 | Research

The intratumoral administration of ferucarbotran conjugated with doxorubicin improved therapeutic effect by magnetic hyperthermia combined with pharmacotherapy in a hepatocellular carcinoma model

Authors: Min Jeong Jeon, Cheol-Hee Ahn, Hyeonjin Kim, In Jae Chung, Seulhee Jung, Young-Hwa Kim, Hyewon Youn, Jin Wook Chung, Young Il Kim

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2014

Login to get access

Abstract

Background

Local hyperthermia of tumor in conjunction with chemotherapy is a promising strategy for cancer treatment. The aim of this study was to evaluate the efficacy of intratumoral delivery of clinically approved magnetic nanoparticles (MNPs) conjugated with doxorubicin to simultaneously induce magnetic hyperthermia and drug delivery in a hepatocellular carcinoma (HCC) model.

Materials and methods

HCC cells expressing luciferase were implanted into the flank of BALB/c-nu mice (n = 19). When the tumor diameter reached 7–8 mm, the animals were divided into four groups according to the injected agents: group A (normal saline, n = 4), group B (doxorubicin, n = 5), group C (MNP, n = 5), and group D (MNP/doxorubicin complex, n = 5). Animals were exposed to an alternating magnetic field (AMF) to receive magnetic hyperthermia, and intratumoral temperature changes were measured.
Bioluminescence imagings (BLIs) were performed before treatment and at 3, 7, and 14 days after treatment to measure the tumoral activities. The relative signal intensity (RSI) of each tumor was calculated by dividing the BLI signal at each time point by the value measured before treatment. At day 14 post-treatment, all tumor tissues were harvested to assess the apoptosis rates by pathological examination.

Results

The rise in temperature of the tumors was 1.88 ± 0.21°C in group A, 0.96 ± 1.05°C in B, 7.93 ± 1.99°C in C, and 8.95 ± 1.31°C in D. The RSI of the tumors at day 14 post-treatment was significantly lower in group D (0.31 ± 0.20) than in group A (2.23 ± 1.14), B (0.94 ± 0.47), and C (1.02 ± 0.21). The apoptosis rates of the tumors were 11.52 ± 3.10% in group A, 23.0 ± 7.68% in B, 25.4 ± 3.36% in C, and 39.0 ± 13.2% in D, respectively.

Conclusions

The intratumoral injection of ferucarbotran conjugated with doxorubicin shows an improved therapeutic effect compared with doxorubicin or ferucarbotran alone when the complex is injected into HCC tissues exposed to AMF for magnetic hyperthermia. This strategy of combining doxorubicin and MNP-induced magnetic hyperthermia exhibits a synergic effect on inhibiting tumor growth in an HCC model.
Appendix
Available only for authorised users
Literature
1.
go back to reference El-Serag HB, Rudolph L: Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007, 132: 2557-2576. 10.1053/j.gastro.2007.04.061.CrossRefPubMed El-Serag HB, Rudolph L: Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007, 132: 2557-2576. 10.1053/j.gastro.2007.04.061.CrossRefPubMed
2.
go back to reference Schwartz M, Roayaie S, Konstadoulakis M: Strategies for the management of hepatocellular carcinoma. Nat Clin Pract Oncol. 2007, 4: 424-432. 10.1038/ncponc0844.CrossRefPubMed Schwartz M, Roayaie S, Konstadoulakis M: Strategies for the management of hepatocellular carcinoma. Nat Clin Pract Oncol. 2007, 4: 424-432. 10.1038/ncponc0844.CrossRefPubMed
3.
go back to reference Hegyi G1, Szigeti GP, Szász A: Hyperthermia versus oncothermia: cellular effects in complementary cancer therapy. Evid Based Complement Alternat Med. 2013, 2013: 672873-10.1155/2013/672873.PubMedCentralPubMed Hegyi G1, Szigeti GP, Szász A: Hyperthermia versus oncothermia: cellular effects in complementary cancer therapy. Evid Based Complement Alternat Med. 2013, 2013: 672873-10.1155/2013/672873.PubMedCentralPubMed
4.
go back to reference Jordan A, Wust P, Fähling H, John W, Hinz A, Felix R: Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperthermia. 1993, 9: 51-68. 10.3109/02656739309061478.CrossRefPubMed Jordan A, Wust P, Fähling H, John W, Hinz A, Felix R: Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperthermia. 1993, 9: 51-68. 10.3109/02656739309061478.CrossRefPubMed
5.
go back to reference Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T: Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng. 2003, 96: 364-369.CrossRefPubMed Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T: Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng. 2003, 96: 364-369.CrossRefPubMed
6.
go back to reference Wust P, Gneveckow U, Johannsen M, Böhmer D, Henkel T, Kahmann F, Sehouli J, Felix R, Ricke J, Jordan A: Magnetic nanoparticles for interstitial thermotherapy–feasibility, tolerance and achieved temperatures. Int J Hyperthermia. 2006, 22: 673-685. 10.1080/02656730601106037.CrossRefPubMed Wust P, Gneveckow U, Johannsen M, Böhmer D, Henkel T, Kahmann F, Sehouli J, Felix R, Ricke J, Jordan A: Magnetic nanoparticles for interstitial thermotherapy–feasibility, tolerance and achieved temperatures. Int J Hyperthermia. 2006, 22: 673-685. 10.1080/02656730601106037.CrossRefPubMed
7.
go back to reference Hilger I, Hergt R, Kaiser WA: Effects of magnetic thermal ablation in muscle tissue using iron oxide particles: an in vitro study. Invest Radiol. 2000, 35: 170-179. 10.1097/00004424-200003000-00003.CrossRefPubMed Hilger I, Hergt R, Kaiser WA: Effects of magnetic thermal ablation in muscle tissue using iron oxide particles: an in vitro study. Invest Radiol. 2000, 35: 170-179. 10.1097/00004424-200003000-00003.CrossRefPubMed
8.
go back to reference Thiesen B, Jordan A: Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia. 2008, 24: 467-474. 10.1080/02656730802104757.CrossRefPubMed Thiesen B, Jordan A: Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia. 2008, 24: 467-474. 10.1080/02656730802104757.CrossRefPubMed
9.
go back to reference Wahajuddin , Arora S: Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012, 7: 3445-3471. 10.2147/IJN.S30320.PubMedCentralCrossRefPubMed Wahajuddin , Arora S: Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012, 7: 3445-3471. 10.2147/IJN.S30320.PubMedCentralCrossRefPubMed
10.
go back to reference Hong S, Leroueil PR, Janus EK, Peters JL, Kober MM, Islam MT, Orr BG, Baker JR, Banaszak Holl MM: Interaction of polycationic polymers with supported lipid bilayers and cells: nano scalehole formation and enhanced membrane permeability. Bioconjug Chem. 2006, 17: 728-734. 10.1021/bc060077y.CrossRefPubMed Hong S, Leroueil PR, Janus EK, Peters JL, Kober MM, Islam MT, Orr BG, Baker JR, Banaszak Holl MM: Interaction of polycationic polymers with supported lipid bilayers and cells: nano scalehole formation and enhanced membrane permeability. Bioconjug Chem. 2006, 17: 728-734. 10.1021/bc060077y.CrossRefPubMed
11.
go back to reference Reimer P, Balzer T: Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol. 2003, 13: 1266-1276.PubMed Reimer P, Balzer T: Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol. 2003, 13: 1266-1276.PubMed
12.
go back to reference de Smet M, Hijnen NM, Langereis S, Elevelt A, Heijman E, Dubois L, Lambin P, Grüll H: Magnetic resonance guided high-intensity focused ultrasound mediated hyperthermia improves the intratumoral distribution of temperature-sensitive liposomal doxorubicin. Invest Radiol. 2013, 48: 395-405. 10.1097/RLI.0b013e3182806940.CrossRefPubMed de Smet M, Hijnen NM, Langereis S, Elevelt A, Heijman E, Dubois L, Lambin P, Grüll H: Magnetic resonance guided high-intensity focused ultrasound mediated hyperthermia improves the intratumoral distribution of temperature-sensitive liposomal doxorubicin. Invest Radiol. 2013, 48: 395-405. 10.1097/RLI.0b013e3182806940.CrossRefPubMed
13.
go back to reference Lee IJ, Ahn CH, Cha EJ, Chung IJ, Chung JW, Kim YI: Improved Drug Targeting to Liver Tumors After Intra-arterial Delivery Using Superparamagnetic Iron Oxide and Iodized Oil: Preclinical Study in a Rabbit Model. Invest Radiol. 2013, 48: 826-833. 10.1097/RLI.0b013e31829c13ef.CrossRefPubMed Lee IJ, Ahn CH, Cha EJ, Chung IJ, Chung JW, Kim YI: Improved Drug Targeting to Liver Tumors After Intra-arterial Delivery Using Superparamagnetic Iron Oxide and Iodized Oil: Preclinical Study in a Rabbit Model. Invest Radiol. 2013, 48: 826-833. 10.1097/RLI.0b013e31829c13ef.CrossRefPubMed
14.
go back to reference Takamatsu S, Matsui O, Gabata T, Kobayashi S, Okuda M, Ougi T, Ikehata Y, Nagano I, Nagae H: Selective induction hyperthermia following transcatheter arterial embolization with a mixture of nano-sized magnetic particles (ferucarbotran) and embolic materials: feasibility study in rabbits. Radiat Med. 2008, 26: 179-187. 10.1007/s11604-007-0212-9.CrossRefPubMed Takamatsu S, Matsui O, Gabata T, Kobayashi S, Okuda M, Ougi T, Ikehata Y, Nagano I, Nagae H: Selective induction hyperthermia following transcatheter arterial embolization with a mixture of nano-sized magnetic particles (ferucarbotran) and embolic materials: feasibility study in rabbits. Radiat Med. 2008, 26: 179-187. 10.1007/s11604-007-0212-9.CrossRefPubMed
15.
go back to reference Tinkum KL, Marpegan L, White LS, Sun J, Herzog ED, Piwnica-Worms D, Piwnica-Worms H: Bioluminescence Imaging Captures the Expression and Dynamics of Endogenous p21 Promoter Activity in Living Mice and Intact Cells. Mol Cell Biol. 2011, 31: 3759-3772. 10.1128/MCB.05243-11.PubMedCentralCrossRefPubMed Tinkum KL, Marpegan L, White LS, Sun J, Herzog ED, Piwnica-Worms D, Piwnica-Worms H: Bioluminescence Imaging Captures the Expression and Dynamics of Endogenous p21 Promoter Activity in Living Mice and Intact Cells. Mol Cell Biol. 2011, 31: 3759-3772. 10.1128/MCB.05243-11.PubMedCentralCrossRefPubMed
16.
go back to reference Li SD, Huang L: Nanoparticles evading the reticuloendothelial system: Role of the supported bilayer. Biochem Biophys Acta. 2009, 1788: 2259-2266. 10.1016/j.bbamem.2009.06.022.PubMedCentralCrossRefPubMed Li SD, Huang L: Nanoparticles evading the reticuloendothelial system: Role of the supported bilayer. Biochem Biophys Acta. 2009, 1788: 2259-2266. 10.1016/j.bbamem.2009.06.022.PubMedCentralCrossRefPubMed
17.
go back to reference Cole AJ, Yang VC, David AE: Cancer theranostics: the rise of targeted magnetic nanoparticles Trends in Biotechnology. Trends Biotechnol. 2011, 29: 323-332. 10.1016/j.tibtech.2011.03.001.PubMedCentralCrossRefPubMed Cole AJ, Yang VC, David AE: Cancer theranostics: the rise of targeted magnetic nanoparticles Trends in Biotechnology. Trends Biotechnol. 2011, 29: 323-332. 10.1016/j.tibtech.2011.03.001.PubMedCentralCrossRefPubMed
18.
go back to reference Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L: Ultra small superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology. 1990, 175: 489-493. 10.1148/radiology.175.2.2326474.CrossRefPubMed Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L: Ultra small superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology. 1990, 175: 489-493. 10.1148/radiology.175.2.2326474.CrossRefPubMed
19.
go back to reference Veiseh O, Gunn JW, Zhang M: Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010, 62: 284-304. 10.1016/j.addr.2009.11.002.PubMedCentralCrossRefPubMed Veiseh O, Gunn JW, Zhang M: Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010, 62: 284-304. 10.1016/j.addr.2009.11.002.PubMedCentralCrossRefPubMed
20.
go back to reference Purushotham S, Ramanujan RV: Thermo responsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater. 2010, 6: 502-510. 10.1016/j.actbio.2009.07.004.CrossRefPubMed Purushotham S, Ramanujan RV: Thermo responsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater. 2010, 6: 502-510. 10.1016/j.actbio.2009.07.004.CrossRefPubMed
21.
go back to reference Facy O, Radais F, Ladoire S, Delroeux D, Tixier H, Ghiringhelli F, Rat P, Chauffert B, Ortega-Deballon P: Comparison of hyperthermia and adrenaline to enhance the intratumoral accumulation of cisplatin in a murine model of peritoneal carcinomatosis. J Exp Clin Cancer Res. 2011, 30: 4-10.1186/1756-9966-30-4.PubMedCentralCrossRefPubMed Facy O, Radais F, Ladoire S, Delroeux D, Tixier H, Ghiringhelli F, Rat P, Chauffert B, Ortega-Deballon P: Comparison of hyperthermia and adrenaline to enhance the intratumoral accumulation of cisplatin in a murine model of peritoneal carcinomatosis. J Exp Clin Cancer Res. 2011, 30: 4-10.1186/1756-9966-30-4.PubMedCentralCrossRefPubMed
22.
go back to reference Le Renard PE, Jordan O, Faes A, Petri-Fink A, Hofmann H, Rüfenacht D, Bosman F, Buchegger F, Doelker E: The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia. Biomaterials. 2010, 31: 691-705. 10.1016/j.biomaterials.2009.09.091.CrossRefPubMed Le Renard PE, Jordan O, Faes A, Petri-Fink A, Hofmann H, Rüfenacht D, Bosman F, Buchegger F, Doelker E: The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia. Biomaterials. 2010, 31: 691-705. 10.1016/j.biomaterials.2009.09.091.CrossRefPubMed
23.
go back to reference Krishnan S, Diagaradjane P, Cho SH: Nanoparticle-mediated thermal therapy: evolving strategies for prostate cancer therapy. Int J Hyperthermia. 2010, 26: 775-789. 10.3109/02656736.2010.485593.PubMedCentralCrossRefPubMed Krishnan S, Diagaradjane P, Cho SH: Nanoparticle-mediated thermal therapy: evolving strategies for prostate cancer therapy. Int J Hyperthermia. 2010, 26: 775-789. 10.3109/02656736.2010.485593.PubMedCentralCrossRefPubMed
24.
go back to reference Sun X, Xing L, Ling CC, Li GC: The effect of mild temperature hyperthermia on tumor hypoxia and blood perfusion: relevance for radiotherapy, vascular targeting and imaging. Int J Hyperthermia. 2010, 26: 224-231. 10.3109/02656730903479855.CrossRefPubMed Sun X, Xing L, Ling CC, Li GC: The effect of mild temperature hyperthermia on tumor hypoxia and blood perfusion: relevance for radiotherapy, vascular targeting and imaging. Int J Hyperthermia. 2010, 26: 224-231. 10.3109/02656730903479855.CrossRefPubMed
25.
go back to reference Karukstis KK, Thompson EH, Whiles JA, Rosenfeld RJ: Deciphering the fluorescence signature of daunomycin and doxorubicin. Biophys Chem. 1998, 73: 249-263. 10.1016/S0301-4622(98)00150-1.CrossRefPubMed Karukstis KK, Thompson EH, Whiles JA, Rosenfeld RJ: Deciphering the fluorescence signature of daunomycin and doxorubicin. Biophys Chem. 1998, 73: 249-263. 10.1016/S0301-4622(98)00150-1.CrossRefPubMed
26.
go back to reference Zhu AX: Systemic therapy of advanced hepatocellular carcinoma: how hopeful should we be?. Oncologist. 2006, 11: 790-800. 10.1634/theoncologist.11-7-790.CrossRefPubMed Zhu AX: Systemic therapy of advanced hepatocellular carcinoma: how hopeful should we be?. Oncologist. 2006, 11: 790-800. 10.1634/theoncologist.11-7-790.CrossRefPubMed
27.
go back to reference Kang YM, Kim GH, Kim JI, Kim da Y, Lee BN, Yoon SM, Kim JH, Kim MS:In vivo efficacy of an intratumorally injected in situ-forming doxorubicin/poly(ethylene glycol)-b-polycaprolactonediblock copolymer. Biomaterials. 2011, 32: 4556-4564. 10.1016/j.biomaterials.2011.03.007.CrossRefPubMed Kang YM, Kim GH, Kim JI, Kim da Y, Lee BN, Yoon SM, Kim JH, Kim MS:In vivo efficacy of an intratumorally injected in situ-forming doxorubicin/poly(ethylene glycol)-b-polycaprolactonediblock copolymer. Biomaterials. 2011, 32: 4556-4564. 10.1016/j.biomaterials.2011.03.007.CrossRefPubMed
28.
go back to reference Al-Abd AM, Hong KY, Song SC, Kuh HJ: Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice. J Control Release. 2010, 142: 101-107. 10.1016/j.jconrel.2009.10.003.CrossRefPubMed Al-Abd AM, Hong KY, Song SC, Kuh HJ: Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice. J Control Release. 2010, 142: 101-107. 10.1016/j.jconrel.2009.10.003.CrossRefPubMed
29.
go back to reference Kim YI, Chung JW: Selective or targeted gene/drug delivery for liver tumors: advantages and current status of local delivery. Expert Rev Gastroenterol Hepatol. 2008, 2: 791-802. 10.1586/17474124.2.6.791.CrossRefPubMed Kim YI, Chung JW: Selective or targeted gene/drug delivery for liver tumors: advantages and current status of local delivery. Expert Rev Gastroenterol Hepatol. 2008, 2: 791-802. 10.1586/17474124.2.6.791.CrossRefPubMed
30.
go back to reference Zinn KR, Chaudhuri TR, Szafran AA, O'Quinn D, Weaver C, Dugger K, Lamar D, Kesterson RA, Wang X, Frank SJ: Noninvasive bioluminescence imaging in small animals. ILAR J. 2008, 49: 103-115. 10.1093/ilar.49.1.103.PubMedCentralCrossRefPubMed Zinn KR, Chaudhuri TR, Szafran AA, O'Quinn D, Weaver C, Dugger K, Lamar D, Kesterson RA, Wang X, Frank SJ: Noninvasive bioluminescence imaging in small animals. ILAR J. 2008, 49: 103-115. 10.1093/ilar.49.1.103.PubMedCentralCrossRefPubMed
Metadata
Title
The intratumoral administration of ferucarbotran conjugated with doxorubicin improved therapeutic effect by magnetic hyperthermia combined with pharmacotherapy in a hepatocellular carcinoma model
Authors
Min Jeong Jeon
Cheol-Hee Ahn
Hyeonjin Kim
In Jae Chung
Seulhee Jung
Young-Hwa Kim
Hyewon Youn
Jin Wook Chung
Young Il Kim
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2014
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-014-0057-x

Other articles of this Issue 1/2014

Journal of Experimental & Clinical Cancer Research 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine