Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2018

Open Access 01-12-2018 | Research

Novel antibodies against GPIbα inhibit pulmonary metastasis by affecting vWF-GPIbα interaction

Authors: Yingxue Qi, Wenchun Chen, Xinyu Liang, Ke Xu, Xiangyu Gu, Fengying Wu, Xuemei Fan, Shengxiang Ren, Junling Liu, Jun Zhang, Renhao Li, Jianwen Liu, Xin Liang

Published in: Journal of Hematology & Oncology | Issue 1/2018

Login to get access

Abstract

Background

Platelet glycoprotein Ibα (GPIbα) extracellular domain, which is part of the receptor complex GPIb-IX-V, plays an important role in tumor metastasis. However, the mechanism through which GPIbα participates in the metastatic process remains unclear. In addition, potential bleeding complication remains an obstacle for the clinical use of anti-platelet agents in cancer therapy.

Methods

We established a series of screening models and obtained rat anti-mouse GPIbα monoclonal antibodies (mAb) 1D12 and 2B4 that demonstrated potential value in suppressing cancer metastasis. To validate our findings, we further obtained mouse anti-human GPIbα monoclonal antibody YQ3 through the same approach.

Results

1D12 and 2B4 affected the von Willebrand factor (vWF)-GPIbα interaction via binding to GPIbα aa 41-50 and aa 277-290 respectively, which markedly inhibited the interaction among platelets, tumor cells, and endothelial cells in vitro, and reduced the mean number of surface nodules in the experimental and spontaneous metastasis models in vivo. As expected, YQ3 inhibited lung cancer adhesion and demonstrated similar value in metastasis. More importantly, for all three mAbs in our study, none of their Fabs induced thrombocytopenia.

Conclusion

Our results therefore supported the hypothesis that GPIbα contributes to tumor metastasis and suggested potential value of using anti-GPIbα mAb to suppress cancer metastasis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, et al. Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past? Cancer Metastasis Rev. 2017;36:1–25.CrossRef Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, et al. Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past? Cancer Metastasis Rev. 2017;36:1–25.CrossRef
2.
go back to reference Bambace NM, Holmes CE. The platelet contribution to cancer progression. J Thromb Haemost. 2011;9:237.CrossRef Bambace NM, Holmes CE. The platelet contribution to cancer progression. J Thromb Haemost. 2011;9:237.CrossRef
3.
go back to reference Ikeda M, Furukawa H, Imamura H, Shimizu J, et al. Poor prognosis associated with thrombocytosis in patients with gastric cancer. Ann Surg Oncol. 2002;9:287–91.CrossRef Ikeda M, Furukawa H, Imamura H, Shimizu J, et al. Poor prognosis associated with thrombocytosis in patients with gastric cancer. Ann Surg Oncol. 2002;9:287–91.CrossRef
4.
go back to reference Monreal M, Fernandezllamazares J, Piñol M, Julian JF, et al. Platelet count and survival in patients with colorectal cancer--a preliminary study. Thromb Haemost. 1998;79:916.PubMed Monreal M, Fernandezllamazares J, Piñol M, Julian JF, et al. Platelet count and survival in patients with colorectal cancer--a preliminary study. Thromb Haemost. 1998;79:916.PubMed
5.
go back to reference Symbas NP, Townsend MF, Elgalley R, Keane TE, et al. Poor prognosis associated with thrombocytosis in patients with renal cell carcinoma. British Journal of Urology International. 2001;87:715–6. Symbas NP, Townsend MF, Elgalley R, Keane TE, et al. Poor prognosis associated with thrombocytosis in patients with renal cell carcinoma. British Journal of Urology International. 2001;87:715–6.
6.
go back to reference Gücer F, Moser F, Tamussino K, Reich O, et al. Thrombocytosis as a prognostic factor in endometrial carcinoma. Gynecol Oncol. 1998;70:210–4.CrossRef Gücer F, Moser F, Tamussino K, Reich O, et al. Thrombocytosis as a prognostic factor in endometrial carcinoma. Gynecol Oncol. 1998;70:210–4.CrossRef
7.
go back to reference Zhang W, Dang S, Hong T, Tang J, et al. A humanized single-chain antibody against beta 3 integrin inhibits pulmonary metastasis by preferentially fragmenting activated platelets in the tumor microenvironment. Blood. 2012;120:2889–98.CrossRef Zhang W, Dang S, Hong T, Tang J, et al. A humanized single-chain antibody against beta 3 integrin inhibits pulmonary metastasis by preferentially fragmenting activated platelets in the tumor microenvironment. Blood. 2012;120:2889–98.CrossRef
8.
go back to reference Poggi A, Vicenzi E, Cioce V, Wasteson A. Platelet contribution to cancer cell growth and migration: the role of platelet growth factors. Pathophysiol Haemost Thromb. 1988;18:18–28.CrossRef Poggi A, Vicenzi E, Cioce V, Wasteson A. Platelet contribution to cancer cell growth and migration: the role of platelet growth factors. Pathophysiol Haemost Thromb. 1988;18:18–28.CrossRef
9.
go back to reference Erpenbeck L, Nieswandt B, Schön M, Pozgajova M, et al. Inhibition of platelet GPIbα and promotion of melanoma metastasis. J Investig Dermatol. 2010;130:576–86.CrossRef Erpenbeck L, Nieswandt B, Schön M, Pozgajova M, et al. Inhibition of platelet GPIbα and promotion of melanoma metastasis. J Investig Dermatol. 2010;130:576–86.CrossRef
10.
go back to reference Amirkhosravi A, Mousa SA, Amaya M, Blaydes S, et al. Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb Haemost. 2003;89:549–54. Amirkhosravi A, Mousa SA, Amaya M, Blaydes S, et al. Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb Haemost. 2003;89:549–54.
11.
go back to reference Trikha M, Zhou Z, Timar J, Raso E, et al. Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res. 2002;62:2824–33.PubMed Trikha M, Zhou Z, Timar J, Raso E, et al. Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res. 2002;62:2824–33.PubMed
12.
go back to reference Nardi M, Feinmark SJ, Hu L, Li Z, et al. Complement-independent Ab-induced peroxide lysis of platelets requires 12-lipoxygenase and a platelet NADPH oxidase pathway. J Clin Invest. 2004;113:973–80.CrossRef Nardi M, Feinmark SJ, Hu L, Li Z, et al. Complement-independent Ab-induced peroxide lysis of platelets requires 12-lipoxygenase and a platelet NADPH oxidase pathway. J Clin Invest. 2004;113:973–80.CrossRef
13.
go back to reference Jain S, Harris J, Ware J. Platelets: linking hemostasis and cancer. Arterioscler Thromb Vasc Biol. 2010;30:2362–7.CrossRef Jain S, Harris J, Ware J. Platelets: linking hemostasis and cancer. Arterioscler Thromb Vasc Biol. 2010;30:2362–7.CrossRef
14.
go back to reference Terraube V, Marx I, Denis CV. Role of von Willebrand factor in tumor metastasis. Thromb Res. 2007;120 Suppl 2:S64.CrossRef Terraube V, Marx I, Denis CV. Role of von Willebrand factor in tumor metastasis. Thromb Res. 2007;120 Suppl 2:S64.CrossRef
15.
go back to reference Chen M, Geng JG. P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. Arch Immunol Ther Exp. 2006;54:75–84.CrossRef Chen M, Geng JG. P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. Arch Immunol Ther Exp. 2006;54:75–84.CrossRef
16.
go back to reference Nierodzik ML, Plotkin A, Kajumo F, Karpatkin S. Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. J Clin Investig. 1991;87:229–36.CrossRef Nierodzik ML, Plotkin A, Kajumo F, Karpatkin S. Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. J Clin Investig. 1991;87:229–36.CrossRef
17.
go back to reference Löf A, Müller JP, Breehm MA. A biophysical view on von Willebrand factor activation. J Cell Physiol. 2017;233:799–810.CrossRef Löf A, Müller JP, Breehm MA. A biophysical view on von Willebrand factor activation. J Cell Physiol. 2017;233:799–810.CrossRef
18.
go back to reference Jain S, Zuka M, Liu J, Russell S, et al. Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proc Natl Acad Sci U S A. 2007;104:9024.CrossRef Jain S, Zuka M, Liu J, Russell S, et al. Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proc Natl Acad Sci U S A. 2007;104:9024.CrossRef
19.
go back to reference Ware J, Russell S, Ruggeri ZM. Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome. Proc Natl Acad Sci U S A. 2000;97:2803.CrossRef Ware J, Russell S, Ruggeri ZM. Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome. Proc Natl Acad Sci U S A. 2000;97:2803.CrossRef
20.
go back to reference Köhler G, Milstein C, Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Biotechnology. 1975;24:524. Köhler G, Milstein C, Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Biotechnology. 1975;24:524.
21.
go back to reference Liang X, Russell SR, Estelle S, Jones LH, et al. Specific inhibition of ectodomain shedding of glycoprotein Ibα by targeting its juxtamembrane shedding cleavage site. J Thromb Haemost. 2013;11:2155–62.CrossRef Liang X, Russell SR, Estelle S, Jones LH, et al. Specific inhibition of ectodomain shedding of glycoprotein Ibα by targeting its juxtamembrane shedding cleavage site. J Thromb Haemost. 2013;11:2155–62.CrossRef
22.
go back to reference Chen W, Liang X, Syed AK, Jessup P, et al. Inhibiting GPIbalpha shedding preserves post-transfusion recovery and hemostatic function of platelets after prolonged storage. Arterioscler Thromb Vasc Biol. 2016;36:1821–8.CrossRef Chen W, Liang X, Syed AK, Jessup P, et al. Inhibiting GPIbalpha shedding preserves post-transfusion recovery and hemostatic function of platelets after prolonged storage. Arterioscler Thromb Vasc Biol. 2016;36:1821–8.CrossRef
23.
go back to reference Cauwenberghs N, Vanhoorelbeke K, Vauterin S, Westra DF, et al. Epitope mapping of inhibitory antibodies against platelet glycoprotein Ibalpha reveals interaction between the leucine-rich repeat N-terminal and C-terminal flanking domains of glycoprotein Ibalpha. Blood. 2001;98:652.CrossRef Cauwenberghs N, Vanhoorelbeke K, Vauterin S, Westra DF, et al. Epitope mapping of inhibitory antibodies against platelet glycoprotein Ibalpha reveals interaction between the leucine-rich repeat N-terminal and C-terminal flanking domains of glycoprotein Ibalpha. Blood. 2001;98:652.CrossRef
24.
go back to reference Ward CM, Andrews RK, Smith AI, Berndt MC. Mocarhagin, a novel cobra venom metalloproteinase, cleaves the platelet von Willebrand factor receptor glycoprotein Ibalpha. Identification of the sulfated tyrosine/anionic sequence Tyr-276-Glu-282 of glycoprotein Ibalpha as a binding site for von Willebra. Biochemistry. 1996;35:4929–38.CrossRef Ward CM, Andrews RK, Smith AI, Berndt MC. Mocarhagin, a novel cobra venom metalloproteinase, cleaves the platelet von Willebrand factor receptor glycoprotein Ibalpha. Identification of the sulfated tyrosine/anionic sequence Tyr-276-Glu-282 of glycoprotein Ibalpha as a binding site for von Willebra. Biochemistry. 1996;35:4929–38.CrossRef
25.
go back to reference Ruan CG, Du XP, Xi XD, Castaldi PA, et al. A murine antiglycoprotein Ib complex monoclonal antibody, SZ 2, inhibits platelet aggregation induced by both ristocetin and collagen. Blood. 1987;69:570–7.PubMed Ruan CG, Du XP, Xi XD, Castaldi PA, et al. A murine antiglycoprotein Ib complex monoclonal antibody, SZ 2, inhibits platelet aggregation induced by both ristocetin and collagen. Blood. 1987;69:570–7.PubMed
26.
go back to reference Li C, Piran S, Chen P, Lang S, et al. The maternal immune response to fetal platelet GPIbα causes frequent miscarriage in mice that can be prevented by intravenous IgG and anti-FcRn therapies. The Journal of clinical investigation. 2011;121:4537–47.CrossRef Li C, Piran S, Chen P, Lang S, et al. The maternal immune response to fetal platelet GPIbα causes frequent miscarriage in mice that can be prevented by intravenous IgG and anti-FcRn therapies. The Journal of clinical investigation. 2011;121:4537–47.CrossRef
27.
go back to reference Wu D, Vanhoorelbeke K, Cauwenberghs N, Meiring M, et al. Inhibition of the von Willebrand (VWF)-collagen interaction by an antihuman VWF monoclonal antibody results in abolition of in vivo arterial platelet thrombus formation in baboons. Blood. 2002;99:3623–8.CrossRef Wu D, Vanhoorelbeke K, Cauwenberghs N, Meiring M, et al. Inhibition of the von Willebrand (VWF)-collagen interaction by an antihuman VWF monoclonal antibody results in abolition of in vivo arterial platelet thrombus formation in baboons. Blood. 2002;99:3623–8.CrossRef
28.
go back to reference Bergmeier W, Rackebrandt K, Schröder W, Zirngibl H, et al. Structural and functional characterization of the mouse von Willebrand factor receptor GPIb-IX with novel monoclonal antibodies. Blood. 2000;95:886–93.PubMed Bergmeier W, Rackebrandt K, Schröder W, Zirngibl H, et al. Structural and functional characterization of the mouse von Willebrand factor receptor GPIb-IX with novel monoclonal antibodies. Blood. 2000;95:886–93.PubMed
29.
go back to reference Vanhoorelbeke K, Ulrichts H, Schoolmeester A, Deckmyn H. Inhibition of platelet adhesion to collagen as a new target for antithrombotic drugs. Curr Drug Targets Cardiovasc Haematol Disord. 2003;3:125–40.CrossRef Vanhoorelbeke K, Ulrichts H, Schoolmeester A, Deckmyn H. Inhibition of platelet adhesion to collagen as a new target for antithrombotic drugs. Curr Drug Targets Cardiovasc Haematol Disord. 2003;3:125–40.CrossRef
30.
go back to reference Quach ME, Dragovich MA, Chen W, Syed AK, et al. Fc-independent immune thrombocytopenia via mechanomolecular signaling in platelets. Blood. 2017;131:787–96. blood-2017-05-784975CrossRef Quach ME, Dragovich MA, Chen W, Syed AK, et al. Fc-independent immune thrombocytopenia via mechanomolecular signaling in platelets. Blood. 2017;131:787–96. blood-2017-05-784975CrossRef
31.
go back to reference Jain S, Russell S, Ware J. Platelet glycoproteinVI facilitates experimental lung metastasis in syngenic mouse models. J Thromb Haemost. 2009;7:1713–7.CrossRef Jain S, Russell S, Ware J. Platelet glycoproteinVI facilitates experimental lung metastasis in syngenic mouse models. J Thromb Haemost. 2009;7:1713–7.CrossRef
32.
go back to reference Karpatkin S, Pearlstein E, Ambrogio C, Coller BS. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Investig. 1988;81:1012–9.CrossRef Karpatkin S, Pearlstein E, Ambrogio C, Coller BS. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Investig. 1988;81:1012–9.CrossRef
33.
go back to reference Cauwenberghs N, Meiring M, Vauterin S, van Wyk V, et al. Antithrombotic effect of platelet glycoprotein Ib-blocking monoclonal antibody Fab fragments in nonhuman primates. Arterioscler Thromb Vasc Biol. 2000;20:1347–53.CrossRef Cauwenberghs N, Meiring M, Vauterin S, van Wyk V, et al. Antithrombotic effect of platelet glycoprotein Ib-blocking monoclonal antibody Fab fragments in nonhuman primates. Arterioscler Thromb Vasc Biol. 2000;20:1347–53.CrossRef
34.
go back to reference Zhao YM, Jiang M, Ji SD, He Y, et al. Anti-human VWF monoclonal antibody SZ-123 prevents arterial thrombus formation by inhibiting VWF-collagen and VWF-platelet interactions in Rhesus monkeys. Biochem Pharmacol. 2013;85:945–53.CrossRef Zhao YM, Jiang M, Ji SD, He Y, et al. Anti-human VWF monoclonal antibody SZ-123 prevents arterial thrombus formation by inhibiting VWF-collagen and VWF-platelet interactions in Rhesus monkeys. Biochem Pharmacol. 2013;85:945–53.CrossRef
35.
go back to reference Zhao Y, Dong N, Shen F, Xie L, et al. Two novel monoclonal antibodies to VWFA3 inhibit VWF-collagen and VWF-platelet interactions. J Thromb Haemost. 2007;5:1963–70.CrossRef Zhao Y, Dong N, Shen F, Xie L, et al. Two novel monoclonal antibodies to VWFA3 inhibit VWF-collagen and VWF-platelet interactions. J Thromb Haemost. 2007;5:1963–70.CrossRef
36.
go back to reference Terraube V, Pendu R, Baruch D, Gebbink MF, et al. Increased metastatic potential of tumor cells in von Willebrand factor-deficient mice. J Thromb Haemost. 2006;4:519.CrossRef Terraube V, Pendu R, Baruch D, Gebbink MF, et al. Increased metastatic potential of tumor cells in von Willebrand factor-deficient mice. J Thromb Haemost. 2006;4:519.CrossRef
37.
go back to reference Mazurov AV, Vinogradov DV, Vlasik TN, Repin VS, et al. Characterization of an antiglycoprotein Ib monoclonal antibody that specifically inhibits platelet-thrombin interaction. Thromb Res. 1991;62:673–84.CrossRef Mazurov AV, Vinogradov DV, Vlasik TN, Repin VS, et al. Characterization of an antiglycoprotein Ib monoclonal antibody that specifically inhibits platelet-thrombin interaction. Thromb Res. 1991;62:673–84.CrossRef
38.
go back to reference Oleksowicz L, Mrowiec Z, Schwartz E, Khorshidi M, et al. Characterization of tumor-induced platelet aggregation: the role of immunorelated GPIb and ja:math expression by MCF-7 breast cancer cells. Thromb Res. 1995;79:261.CrossRef Oleksowicz L, Mrowiec Z, Schwartz E, Khorshidi M, et al. Characterization of tumor-induced platelet aggregation: the role of immunorelated GPIb and ja:math expression by MCF-7 breast cancer cells. Thromb Res. 1995;79:261.CrossRef
39.
go back to reference McCarty OJ, Jadhav S, Burdick MM, Bell WR, et al. Fluid shear regulates the kinetics and molecular mechanisms of activation-dependent platelet binding to colon carcinoma cells. Biophys J. 2002;83:836–48.CrossRef McCarty OJ, Jadhav S, Burdick MM, Bell WR, et al. Fluid shear regulates the kinetics and molecular mechanisms of activation-dependent platelet binding to colon carcinoma cells. Biophys J. 2002;83:836–48.CrossRef
40.
go back to reference Leclerc JR. Platelet glycoprotein IIb/IIIa antagonists: lessons learned from clinical trials and future directions. Crit Care Med. 2002;30:332–40.CrossRef Leclerc JR. Platelet glycoprotein IIb/IIIa antagonists: lessons learned from clinical trials and future directions. Crit Care Med. 2002;30:332–40.CrossRef
41.
go back to reference Palumbo JS, Kombrinck KW, Drew AF, Grimes TS, et al. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood. 2000;96:3302.PubMed Palumbo JS, Kombrinck KW, Drew AF, Grimes TS, et al. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood. 2000;96:3302.PubMed
Metadata
Title
Novel antibodies against GPIbα inhibit pulmonary metastasis by affecting vWF-GPIbα interaction
Authors
Yingxue Qi
Wenchun Chen
Xinyu Liang
Ke Xu
Xiangyu Gu
Fengying Wu
Xuemei Fan
Shengxiang Ren
Junling Liu
Jun Zhang
Renhao Li
Jianwen Liu
Xin Liang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2018
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-018-0659-4

Other articles of this Issue 1/2018

Journal of Hematology & Oncology 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine