Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2017

Open Access 01-12-2017 | Research

Prostate-specific IL-6 transgene autonomously induce prostate neoplasm through amplifying inflammation in the prostate and peri-prostatic adipose tissue

Authors: Gang Liu, Jinyu Zhang, Lewis Frey, Xiao Gang, Kongming Wu, Qian Liu, Michael Lilly, Jennifer Wu

Published in: Journal of Hematology & Oncology | Issue 1/2017

Login to get access

Abstract

Background

The causative role of the pro-inflammatory cytokine IL-6 in prostate cancer progression has been well established at molecular level. However, whether and how IL-6 may play a role in prostate cancer risk and development is not well defined. One limitation factor to acquiring this knowledge is the lack of appropriate animal models.

Methods

We generated a novel line of prostate-specific IL-6 transgenic mouse model. We compared the prostate pathology, tumorigenic signaling components, and prostate tumor microenvironment of the IL-6 transgenic mice with wild type littermates.

Results

With this model, we demonstrate that IL-6 induces prostate neoplasm autonomously. We further demonstrate that transgenic expression of IL-6 in the prostate activates oncogenic pathways, induces autocrine IL-6 secretion and steadily-state of STAT3 activation in the prostate tissue, upregulates paracrine insulin-like growth factor (IGF) signaling axis, reprograms prostate oncogenic gene expression, and more intriguingly, amplifies inflammation in the prostate and peri-prostatic adipose tissue.

Conclusions

The pro-inflammatory IL-6 is autonomous oncogene for the prostate. IL-6 induces prostate oncogenesis through amplifying local inflammation. We also presented a valuable animal model to study inflammation and prostate cancer development.
Appendix
Available only for authorised users
Literature
1.
3.
go back to reference Corcoran NM, Costello AJ. Interleukin-6: minor player or starring role in the development of hormone-refractory prostate cancer? BJU Int. 2003;91(6):545–53.CrossRefPubMed Corcoran NM, Costello AJ. Interleukin-6: minor player or starring role in the development of hormone-refractory prostate cancer? BJU Int. 2003;91(6):545–53.CrossRefPubMed
4.
go back to reference Ishiguro H, et al. aPKClambda/iota promotes growth of prostate cancer cells in an autocrine manner through transcriptional activation of interleukin-6. Proc Natl Acad Sci U S A. 2009;106(38):16369–74.CrossRefPubMedPubMedCentral Ishiguro H, et al. aPKClambda/iota promotes growth of prostate cancer cells in an autocrine manner through transcriptional activation of interleukin-6. Proc Natl Acad Sci U S A. 2009;106(38):16369–74.CrossRefPubMedPubMedCentral
5.
go back to reference Paule B, et al. The NF-kappaB/IL-6 pathway in metastatic androgen-independent prostate cancer: new therapeutic approaches? World J Urol. 2007;25(5):477–89.CrossRefPubMed Paule B, et al. The NF-kappaB/IL-6 pathway in metastatic androgen-independent prostate cancer: new therapeutic approaches? World J Urol. 2007;25(5):477–89.CrossRefPubMed
6.
go back to reference Santer FR, et al. Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endocr Relat Cancer. 2010;17(1):241–53.CrossRefPubMedPubMedCentral Santer FR, et al. Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endocr Relat Cancer. 2010;17(1):241–53.CrossRefPubMedPubMedCentral
7.
go back to reference Zhu Y, et al. Interleukin-6 induces neuroendocrine differentiation (NED) through suppression of RE-1 silencing transcription factor (REST). Prostate. 2014;74(11):1086–94.CrossRefPubMed Zhu Y, et al. Interleukin-6 induces neuroendocrine differentiation (NED) through suppression of RE-1 silencing transcription factor (REST). Prostate. 2014;74(11):1086–94.CrossRefPubMed
9.
go back to reference Knupfer H, Preiss R. Serum interleukin-6 levels in colorectal cancer patients—a summary of published results. Int J Colorectal Dis. 2010;25(2):135–40.CrossRefPubMed Knupfer H, Preiss R. Serum interleukin-6 levels in colorectal cancer patients—a summary of published results. Int J Colorectal Dis. 2010;25(2):135–40.CrossRefPubMed
10.
go back to reference Milicevic N, et al. Comparison between clinical significance of serum proinflammatory protein interleukin-6 and classic tumor markers total PSA, free PSA and free/total PSA prior to prostate biopsy. Coll Antropol. 2014;38(1):147–50.PubMed Milicevic N, et al. Comparison between clinical significance of serum proinflammatory protein interleukin-6 and classic tumor markers total PSA, free PSA and free/total PSA prior to prostate biopsy. Coll Antropol. 2014;38(1):147–50.PubMed
11.
go back to reference Nakashima J, et al. Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clin Cancer Res. 2000;6(7):2702–6.PubMed Nakashima J, et al. Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clin Cancer Res. 2000;6(7):2702–6.PubMed
12.
go back to reference Tam L, et al. Expression levels of the JAK/STAT pathway in the transition from hormone-sensitive to hormone-refractory prostate cancer. Br J Cancer. 2007;97(3):378–83.CrossRefPubMedPubMedCentral Tam L, et al. Expression levels of the JAK/STAT pathway in the transition from hormone-sensitive to hormone-refractory prostate cancer. Br J Cancer. 2007;97(3):378–83.CrossRefPubMedPubMedCentral
14.
15.
go back to reference Kishimoto T. The biology of interleukin-6. Blood. 1989;74(1):1–10.PubMed Kishimoto T. The biology of interleukin-6. Blood. 1989;74(1):1–10.PubMed
16.
go back to reference Yu SH, et al. A paracrine role for IL6 in prostate cancer patients: lack of production by primary or metastatic tumor cells. Cancer Immunol Res. 2015;3(10):1175–84.CrossRefPubMedPubMedCentral Yu SH, et al. A paracrine role for IL6 in prostate cancer patients: lack of production by primary or metastatic tumor cells. Cancer Immunol Res. 2015;3(10):1175–84.CrossRefPubMedPubMedCentral
17.
go back to reference Jones SA, et al. IL-6 transsignaling: the in vivo consequences. J Interferon Cytokine Res. 2005;25(5):241–53.CrossRefPubMed Jones SA, et al. IL-6 transsignaling: the in vivo consequences. J Interferon Cytokine Res. 2005;25(5):241–53.CrossRefPubMed
18.
go back to reference McLoughlin RM, et al. IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation. Proc Natl Acad Sci U S A. 2005;102(27):9589–94.CrossRefPubMedPubMedCentral McLoughlin RM, et al. IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation. Proc Natl Acad Sci U S A. 2005;102(27):9589–94.CrossRefPubMedPubMedCentral
19.
go back to reference Yu H, et al. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736–46.CrossRefPubMed Yu H, et al. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736–46.CrossRefPubMed
21.
go back to reference Lu K, et al. The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6. Cancer Lett. 2015;359(2):250–8.CrossRefPubMed Lu K, et al. The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6. Cancer Lett. 2015;359(2):250–8.CrossRefPubMed
22.
go back to reference Yang, Z., et al., Acquisition of resistance to trastuzumab in gastric cancer cells is associated with activation of IL-6/STAT3/Jagged-1/Notch positive feedback loop. Oncotarget. 2015;6(7):5072–87 Yang, Z., et al., Acquisition of resistance to trastuzumab in gastric cancer cells is associated with activation of IL-6/STAT3/Jagged-1/Notch positive feedback loop. Oncotarget. 2015;6(7):5072–87
23.
go back to reference Bournazou E, Bromberg J. Targeting the tumor microenvironment: JAK-STAT3 signaling. JAKSTAT. 2013;2(2):e23828.PubMedCentral Bournazou E, Bromberg J. Targeting the tumor microenvironment: JAK-STAT3 signaling. JAKSTAT. 2013;2(2):e23828.PubMedCentral
24.
go back to reference Guo Y, et al. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev. 2012;38(7):904–10.CrossRefPubMed Guo Y, et al. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev. 2012;38(7):904–10.CrossRefPubMed
25.
go back to reference Middleton K, et al. Interleukin-6: an angiogenic target in solid tumours. Crit Rev Oncol Hematol. 2014;89(1):129–39.CrossRefPubMed Middleton K, et al. Interleukin-6: an angiogenic target in solid tumours. Crit Rev Oncol Hematol. 2014;89(1):129–39.CrossRefPubMed
26.
go back to reference Zhang K, et al. Association between interleukin-6 polymorphisms and urinary system cancer risk: evidence from a meta-analysis. Onco Targets Ther. 2016;9:567–77.CrossRefPubMedPubMedCentral Zhang K, et al. Association between interleukin-6 polymorphisms and urinary system cancer risk: evidence from a meta-analysis. Onco Targets Ther. 2016;9:567–77.CrossRefPubMedPubMedCentral
27.
go back to reference Chen J, et al. Association between polymorphisms in selected inflammatory response genes and the risk of prostate cancer. Onco Targets Ther. 2016;9:223–9.PubMedPubMedCentral Chen J, et al. Association between polymorphisms in selected inflammatory response genes and the risk of prostate cancer. Onco Targets Ther. 2016;9:223–9.PubMedPubMedCentral
28.
go back to reference Chen CH, et al. Role of interleukin-6 gene polymorphisms in the development of prostate cancer. Genet Mol Res. 2015;14(4):13370–4.CrossRefPubMed Chen CH, et al. Role of interleukin-6 gene polymorphisms in the development of prostate cancer. Genet Mol Res. 2015;14(4):13370–4.CrossRefPubMed
29.
go back to reference Coulie PG, Stevens M, Van Snick J. High- and low-affinity receptors for murine interleukin 6. Distinct distribution on B and T cells. Eur J Immunol. 1989;19(11):2107–14.CrossRefPubMed Coulie PG, Stevens M, Van Snick J. High- and low-affinity receptors for murine interleukin 6. Distinct distribution on B and T cells. Eur J Immunol. 1989;19(11):2107–14.CrossRefPubMed
30.
go back to reference Hammacher A, et al. Structure-function analysis of human IL-6: identification of two distinct regions that are important for receptor binding. Protein Sci. 1994;3(12):2280–93.CrossRefPubMedPubMedCentral Hammacher A, et al. Structure-function analysis of human IL-6: identification of two distinct regions that are important for receptor binding. Protein Sci. 1994;3(12):2280–93.CrossRefPubMedPubMedCentral
31.
go back to reference Greenberg NM, et al. The rat probasin gene promoter directs hormonally and developmentally regulated expression of a heterologous gene specifically to the prostate in transgenic mice. Mol Endocrinol. 1994;8(2):230–9.PubMed Greenberg NM, et al. The rat probasin gene promoter directs hormonally and developmentally regulated expression of a heterologous gene specifically to the prostate in transgenic mice. Mol Endocrinol. 1994;8(2):230–9.PubMed
33.
go back to reference Cervantes-Arias A, Pang LY, Argyle DJ. Epithelial-mesenchymal transition as a fundamental mechanism underlying the cancer phenotype. Vet Comp Oncol. 2013;11(3):169–84.CrossRefPubMed Cervantes-Arias A, Pang LY, Argyle DJ. Epithelial-mesenchymal transition as a fundamental mechanism underlying the cancer phenotype. Vet Comp Oncol. 2013;11(3):169–84.CrossRefPubMed
34.
35.
36.
go back to reference Kim MJ, et al. Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Res. 2002;62(11):2999–3004.PubMed Kim MJ, et al. Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Res. 2002;62(11):2999–3004.PubMed
38.
go back to reference Garbers C, Aparicio-Siegmund S, Rose-John S. The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol. 2015;34:75–82.CrossRefPubMed Garbers C, Aparicio-Siegmund S, Rose-John S. The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol. 2015;34:75–82.CrossRefPubMed
39.
go back to reference Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol. 2014;26(1):54–74.CrossRefPubMed Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol. 2014;26(1):54–74.CrossRefPubMed
40.
41.
go back to reference Guven Maiorov E, et al. The structural network of inflammation and cancer: merits and challenges. Semin Cancer Biol. 2013;23(4):243–51.CrossRefPubMed Guven Maiorov E, et al. The structural network of inflammation and cancer: merits and challenges. Semin Cancer Biol. 2013;23(4):243–51.CrossRefPubMed
42.
go back to reference Janakiram NB, Rao CV. The role of inflammation in colon cancer. Adv Exp Med Biol. 2014;816:25–52.CrossRefPubMed Janakiram NB, Rao CV. The role of inflammation in colon cancer. Adv Exp Med Biol. 2014;816:25–52.CrossRefPubMed
43.
go back to reference Taverna, G., et al., Inflammation and prostate cancer: friends or foe? Inflamm Res, 2015 Taverna, G., et al., Inflammation and prostate cancer: friends or foe? Inflamm Res, 2015
44.
go back to reference Aggarwal BB, et al. Inflammation and cancer: how hot is the link? Biochem Pharmacol. 2006;72(11):1605–21.CrossRefPubMed Aggarwal BB, et al. Inflammation and cancer: how hot is the link? Biochem Pharmacol. 2006;72(11):1605–21.CrossRefPubMed
45.
go back to reference Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7(3):211–7.CrossRefPubMed Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7(3):211–7.CrossRefPubMed
46.
go back to reference Colotta F, et al. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073–81.CrossRefPubMed Colotta F, et al. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073–81.CrossRefPubMed
47.
go back to reference Zarogoulidis P, et al. Interleukin-6 cytokine: a multifunctional glycoprotein for cancer. Immunome Res. 2013;9(62):16535.PubMedPubMedCentral Zarogoulidis P, et al. Interleukin-6 cytokine: a multifunctional glycoprotein for cancer. Immunome Res. 2013;9(62):16535.PubMedPubMedCentral
48.
go back to reference Kubo M, Hanada T, Yoshimura A. Suppressors of cytokine signaling and immunity. Nat Immunol. 2003;4(12):1169–76.CrossRefPubMed Kubo M, Hanada T, Yoshimura A. Suppressors of cytokine signaling and immunity. Nat Immunol. 2003;4(12):1169–76.CrossRefPubMed
50.
go back to reference Isomoto H. Epigenetic alterations in cholangiocarcinoma-sustained IL-6/STAT3 signaling in cholangio-carcinoma due to SOCS3 epigenetic silencing. Digestion. 2009;79 Suppl 1:2–8.CrossRefPubMed Isomoto H. Epigenetic alterations in cholangiocarcinoma-sustained IL-6/STAT3 signaling in cholangio-carcinoma due to SOCS3 epigenetic silencing. Digestion. 2009;79 Suppl 1:2–8.CrossRefPubMed
51.
go back to reference Pierconti F, et al. Epigenetic silencing of SOCS3 identifies a subset of prostate cancer with an aggressive behavior. Prostate. 2011;71(3):318–25.CrossRefPubMed Pierconti F, et al. Epigenetic silencing of SOCS3 identifies a subset of prostate cancer with an aggressive behavior. Prostate. 2011;71(3):318–25.CrossRefPubMed
52.
go back to reference Cutolo M, Paolino S, Pizzorni C. Possible contribution of chronic inflammation in the induction of cancer in rheumatic diseases. Clin Exp Rheumatol. 2014;32(6):839–47.PubMed Cutolo M, Paolino S, Pizzorni C. Possible contribution of chronic inflammation in the induction of cancer in rheumatic diseases. Clin Exp Rheumatol. 2014;32(6):839–47.PubMed
53.
go back to reference Shanmugam MK, Sethi G. Role of epigenetics in inflammation-associated diseases. Subcell Biochem. 2013;61:627–57.CrossRefPubMed Shanmugam MK, Sethi G. Role of epigenetics in inflammation-associated diseases. Subcell Biochem. 2013;61:627–57.CrossRefPubMed
54.
go back to reference Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–83.CrossRefPubMed Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–83.CrossRefPubMed
55.
go back to reference Jayachandran A, Dhungel B, Steel JC. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma. J Hematol Oncol. 2016;9(1):74.CrossRefPubMedPubMedCentral Jayachandran A, Dhungel B, Steel JC. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma. J Hematol Oncol. 2016;9(1):74.CrossRefPubMedPubMedCentral
56.
go back to reference Li X, et al. Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFkappaB-TLR signaling pathway. J Hematol Oncol. 2016;9:42.CrossRefPubMedPubMedCentral Li X, et al. Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFkappaB-TLR signaling pathway. J Hematol Oncol. 2016;9:42.CrossRefPubMedPubMedCentral
57.
go back to reference Yin X, et al. Coexpression of gene Oct4 and Nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/Snail signaling. J Hematol Oncol. 2015;8:23.CrossRefPubMedPubMedCentral Yin X, et al. Coexpression of gene Oct4 and Nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/Snail signaling. J Hematol Oncol. 2015;8:23.CrossRefPubMedPubMedCentral
58.
go back to reference MacLennan GT, et al. The influence of chronic inflammation in prostatic carcinogenesis: a 5-year followup study. J Urol. 2006;176(3):1012–6.CrossRefPubMed MacLennan GT, et al. The influence of chronic inflammation in prostatic carcinogenesis: a 5-year followup study. J Urol. 2006;176(3):1012–6.CrossRefPubMed
59.
60.
go back to reference Sfanos KS, Hempel HA, De Marzo AM. The role of inflammation in prostate cancer. Adv Exp Med Biol. 2014;816:153–81.CrossRefPubMed Sfanos KS, Hempel HA, De Marzo AM. The role of inflammation in prostate cancer. Adv Exp Med Biol. 2014;816:153–81.CrossRefPubMed
Metadata
Title
Prostate-specific IL-6 transgene autonomously induce prostate neoplasm through amplifying inflammation in the prostate and peri-prostatic adipose tissue
Authors
Gang Liu
Jinyu Zhang
Lewis Frey
Xiao Gang
Kongming Wu
Qian Liu
Michael Lilly
Jennifer Wu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2017
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-016-0386-7

Other articles of this Issue 1/2017

Journal of Hematology & Oncology 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine