Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2015

Open Access 01-12-2015 | Research

Redirection of CD4+ and CD8+ T lymphocytes via an anti-CD3 × anti-CD19 bi-specific antibody combined with cytosine arabinoside and the efficient lysis of patient-derived B-ALL cells

Authors: Dongmei Fan, Wei Li, Yuqi Yang, Xiaolong Zhang, Qing Zhang, Yan Yan, Ming Yang, Jianxiang Wang, Dongsheng Xiong

Published in: Journal of Hematology & Oncology | Issue 1/2015

Login to get access

Abstract

Background

B-acute lymphoblastic leukemia (B-ALL) is derived from B cell progenitors. Recently, the development of appropriate combinations of chemotherapy and immunotherapy represents a promising approach for eliminating cancer. We previously constructed an anti-CD3 × anti-CD19 bi-specific antibody in a diabody configuration and its disulfide-stabilized format (ds-diabody). The combination of the diabody or ds-diabody and Ara-C was highly effective in enhancing the cytotoxicity of T cells against the CD19+ human leukemia cell-line, Nalm-6, both in vitro and in vivo. This study verified whether B-ALL patient-derived cells were sensitive to the diabody or ds-diabody and low-dosage Ara-C combination.

Methods

This study aimed to detect the B7 family members B7.1 (CD80) and B7.2 (CD86) that were expressed in B-ALL patient-derived cells pre-treated by Ara-C (0.25 μM) and to determine the targeted killing ability of T cell subtypes induced by the diabody or ds-diabody combination with Ara-C both in vitro and in vivo. We also determined the levels of the cytokines that were released by activated CD4+ or CD8+ T cells during therapy.

Result

Low-dose Ara-C enhanced CD80 and CD86 expression in nearly 50 % of specimens of B-ALL patient-derived cells. A combination of diabody or ds-diabody and Ara-C enhanced T cell against B-ALL cells in vitro and in vivo. Both CD8+ and CD4+ T cells were potently activated. Expression of CD25 and CD69 was augmented equally by CD4+ or CD8+ T cells. However, CD8+ T cells made the major contribution by redirecting target cell lysis in a granzyme B and perforin-dependent mechanism. CD4+ T cells played an important immunomodulatory role by secreting IL2. Consequently, IL3, IL6, TNFα, and IFNγ were also released by CD4+ or CD8+ T cells following diabody-mediated T cell activation.

Conclusion

T cell therapy induced by diabody or ds-diabody combined with low dose of Ara-C was effective against cancer cell-lines and in clinical trials. In vivo, the ds-diabody was more efficient than its parent diabody due to its enhanced stability.
Literature
1.
go back to reference Geethakumari PR, Hoffmann MS, Pemmaraju N, Hu S, Jorgensen JL, O’Brien S, et al. Extramedullary B lymphoblastic leukemia/lymphoma (B-ALL/B-LBL): a diagnostic challenge. Clin Lymphoma Myeloma Leuk. 2014;14:e115–8.PubMedCentralCrossRefPubMed Geethakumari PR, Hoffmann MS, Pemmaraju N, Hu S, Jorgensen JL, O’Brien S, et al. Extramedullary B lymphoblastic leukemia/lymphoma (B-ALL/B-LBL): a diagnostic challenge. Clin Lymphoma Myeloma Leuk. 2014;14:e115–8.PubMedCentralCrossRefPubMed
2.
go back to reference Wiegering V, Frank J, Freudenberg S, Morbach H, Schlegel PG, Eyrich M, et al. Impaired B-cell reconstitution in children after chemotherapy for standard or medium risk acute precursor B-lymphoblastic leukemia. Leuk Lymphoma. 2014;55:870–5.CrossRefPubMed Wiegering V, Frank J, Freudenberg S, Morbach H, Schlegel PG, Eyrich M, et al. Impaired B-cell reconstitution in children after chemotherapy for standard or medium risk acute precursor B-lymphoblastic leukemia. Leuk Lymphoma. 2014;55:870–5.CrossRefPubMed
3.
go back to reference Boonchalermvichian C, Xie Y, Brynes RK, Siddiqi IN. Spontaneous, transient regression of B lymphoblastic leukemia in an adult patient: a variant presentation of prodromal/pre-ALL. Leuk Res. 2012;36:e57–9.CrossRefPubMed Boonchalermvichian C, Xie Y, Brynes RK, Siddiqi IN. Spontaneous, transient regression of B lymphoblastic leukemia in an adult patient: a variant presentation of prodromal/pre-ALL. Leuk Res. 2012;36:e57–9.CrossRefPubMed
4.
go back to reference Faderl S, O’Brien S, Pui CH, Stock W, Wetzler M, Hoelzer D, et al. The biology and therapy of adult acute lymphoblastic leukemia. Cancer. 2010;116:1165–76.CrossRefPubMed Faderl S, O’Brien S, Pui CH, Stock W, Wetzler M, Hoelzer D, et al. The biology and therapy of adult acute lymphoblastic leukemia. Cancer. 2010;116:1165–76.CrossRefPubMed
9.
go back to reference Grover NS, Park SI.Novel Targeted Agents in Hodgkin and Non-Hodgkin Lymphoma Therapy.Pharmaceuticals (Basel). 2015;8:607-36. Grover NS, Park SI.Novel Targeted Agents in Hodgkin and Non-Hodgkin Lymphoma Therapy.Pharmaceuticals (Basel). 2015;8:607-36.
11.
go back to reference Mellor JD, Brown MP, Irving HR, Zalcberg JR, Dobrovic A. A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. J Hematol Oncol. 2013;6:1.PubMedCentralCrossRefPubMed Mellor JD, Brown MP, Irving HR, Zalcberg JR, Dobrovic A. A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. J Hematol Oncol. 2013;6:1.PubMedCentralCrossRefPubMed
12.
go back to reference Hoelzer D, Gokbuget N. Chemoimmunotherapy in acute lymphoblastic leukemia. Blood Rev. 2012;26:25–32.CrossRefPubMed Hoelzer D, Gokbuget N. Chemoimmunotherapy in acute lymphoblastic leukemia. Blood Rev. 2012;26:25–32.CrossRefPubMed
13.
go back to reference Kantarjian H, Thomas D, Wayne AS, O’Brien S. Monoclonal antibody-based therapies: a new dawn in the treatment of acute lymphoblastic leukemia. J Clin Oncol. 2012;30:3876–83.PubMedCentralCrossRefPubMed Kantarjian H, Thomas D, Wayne AS, O’Brien S. Monoclonal antibody-based therapies: a new dawn in the treatment of acute lymphoblastic leukemia. J Clin Oncol. 2012;30:3876–83.PubMedCentralCrossRefPubMed
14.
go back to reference Thomas DA, O’Brien S, Faderl S, Garcia-Manero G, Ferrajoli A, Wierda W, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28:3880–9.PubMedCentralCrossRefPubMed Thomas DA, O’Brien S, Faderl S, Garcia-Manero G, Ferrajoli A, Wierda W, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28:3880–9.PubMedCentralCrossRefPubMed
15.
go back to reference Hoelzer D. Targeted therapy with monoclonal antibodies in acute lymphoblastic leukemia. Curr Opin Oncol. 2013;25:701–6.CrossRefPubMed Hoelzer D. Targeted therapy with monoclonal antibodies in acute lymphoblastic leukemia. Curr Opin Oncol. 2013;25:701–6.CrossRefPubMed
16.
go back to reference Breton CS, Nahimana A, Aubry D, Macoin J, Moretti P, Bertschinger M, et al. A novel anti-CD19 monoclonal antibody (GBR 401) with high killing activity against B cell malignancies. J Hematol Oncol. 2014;7:33.PubMedCentralCrossRefPubMed Breton CS, Nahimana A, Aubry D, Macoin J, Moretti P, Bertschinger M, et al. A novel anti-CD19 monoclonal antibody (GBR 401) with high killing activity against B cell malignancies. J Hematol Oncol. 2014;7:33.PubMedCentralCrossRefPubMed
18.
go back to reference Han E, Li X-l, Wang C-r, Li T-f, Han S-y. Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges. J Hematol Oncol. 2013;6(1):47.PubMedCentralCrossRefPubMed Han E, Li X-l, Wang C-r, Li T-f, Han S-y. Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges. J Hematol Oncol. 2013;6(1):47.PubMedCentralCrossRefPubMed
19.
go back to reference Wu J, Fu J, Zhang M, Liu D. AFM13: a first-in-class tetravalent bispecific anti-CD30/CD16A antibody for NK cell-mediated immunotherapy. J Hematol Oncol. 2015;8:96.PubMedCentralCrossRefPubMed Wu J, Fu J, Zhang M, Liu D. AFM13: a first-in-class tetravalent bispecific anti-CD30/CD16A antibody for NK cell-mediated immunotherapy. J Hematol Oncol. 2015;8:96.PubMedCentralCrossRefPubMed
20.
go back to reference Wolf E, Hofmeister R, Kufer P, Schlereth B, Baeuerle PA. BiTEs: bispecific antibody constructs with unique anti-tumor activity. Drug Discov Today. 2005;10(18):1237–44.CrossRefPubMed Wolf E, Hofmeister R, Kufer P, Schlereth B, Baeuerle PA. BiTEs: bispecific antibody constructs with unique anti-tumor activity. Drug Discov Today. 2005;10(18):1237–44.CrossRefPubMed
21.
go back to reference Hoffmann P, Hofmeister R, Brischwein K, Brandl C, Crommer S, Bargou R, et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer. 2005;115:98–104.CrossRefPubMed Hoffmann P, Hofmeister R, Brischwein K, Brandl C, Crommer S, Bargou R, et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer. 2005;115:98–104.CrossRefPubMed
22.
go back to reference Offner S, Hofmeister R, Romaniuk A, Kufer P, Baeuerle PA. Induction of regular cytolytic T cell synapses by bispecific singlechain antibody constructs on MHC class I-negative tumor cells. Mol Immunol. 2006;43:763–71.CrossRefPubMed Offner S, Hofmeister R, Romaniuk A, Kufer P, Baeuerle PA. Induction of regular cytolytic T cell synapses by bispecific singlechain antibody constructs on MHC class I-negative tumor cells. Mol Immunol. 2006;43:763–71.CrossRefPubMed
23.
go back to reference Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2006;69:4941–4.CrossRef Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2006;69:4941–4.CrossRef
24.
go back to reference Stamova S, Feldmann A, Cartellieri M, Arndt C, Koristka S, Apel F, et al. Generation of single-chain bispecific green fluorescent protein fusion antibodies for imaging of antibody-induced T cell synapses. Anal Biochem. 2012;423:261–8.CrossRefPubMed Stamova S, Feldmann A, Cartellieri M, Arndt C, Koristka S, Apel F, et al. Generation of single-chain bispecific green fluorescent protein fusion antibodies for imaging of antibody-induced T cell synapses. Anal Biochem. 2012;423:261–8.CrossRefPubMed
25.
go back to reference Kipriyanov SM, Moldenhauer G, Strauss G, Little M. Bispecific CD3 x CD19 diabody for T cell-mediated lysis of malignant human B cells. Int J Cancer. 1998;77:763–72.CrossRefPubMed Kipriyanov SM, Moldenhauer G, Strauss G, Little M. Bispecific CD3 x CD19 diabody for T cell-mediated lysis of malignant human B cells. Int J Cancer. 1998;77:763–72.CrossRefPubMed
26.
go back to reference Löffler A, Kufer P, Lutterbüse R, Zettl F, Daniel PT, Schwenkenbecher JM, et al. A recombinant bispecific single-chain antibody, CD19 × CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 2000;95:2098–103.PubMed Löffler A, Kufer P, Lutterbüse R, Zettl F, Daniel PT, Schwenkenbecher JM, et al. A recombinant bispecific single-chain antibody, CD19 × CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 2000;95:2098–103.PubMed
27.
go back to reference Topp MS, Kufer P, Gökbuget N, Goebeler M, Klinger M, Neumann S, et al. Targeted therapy with the T-cell–engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29:2493–8.CrossRefPubMed Topp MS, Kufer P, Gökbuget N, Goebeler M, Klinger M, Neumann S, et al. Targeted therapy with the T-cell–engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29:2493–8.CrossRefPubMed
28.
go back to reference Hu J, Kinn J, Zirakzadeh AA, Sherif A, Norstedt G, Wikström AC, et al. The effects of chemotherapeutic drugs on human monocyte-derived dendritic cell differentiation and antigen presentation. Clin Exp Immunol. 2013;172:490–9.PubMedCentralCrossRefPubMed Hu J, Kinn J, Zirakzadeh AA, Sherif A, Norstedt G, Wikström AC, et al. The effects of chemotherapeutic drugs on human monocyte-derived dendritic cell differentiation and antigen presentation. Clin Exp Immunol. 2013;172:490–9.PubMedCentralCrossRefPubMed
29.
go back to reference Rummel MJ, Niederle N, Maschmeyer G, Banat GA, von Grünhagen U, Losem C, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381:1203–10.CrossRefPubMed Rummel MJ, Niederle N, Maschmeyer G, Banat GA, von Grünhagen U, Losem C, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381:1203–10.CrossRefPubMed
30.
go back to reference Hiddemann W, Kneba M, Dreyling M, Schmitz N, Lengfelder E, Schmits R, et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood. 2005;106:3725–32.CrossRefPubMed Hiddemann W, Kneba M, Dreyling M, Schmitz N, Lengfelder E, Schmits R, et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood. 2005;106:3725–32.CrossRefPubMed
31.
go back to reference Wei L, Dongmei F, Ming Y, Ruizan S, Yan Y, Linlin J, et al. Disulfide-stabilized diabody antiCD19/antiCD3 exceeds its parental antibody in tumor-targeting activity. Cell Oncol. 2012;35:423–34.CrossRef Wei L, Dongmei F, Ming Y, Ruizan S, Yan Y, Linlin J, et al. Disulfide-stabilized diabody antiCD19/antiCD3 exceeds its parental antibody in tumor-targeting activity. Cell Oncol. 2012;35:423–34.CrossRef
32.
go back to reference Osada T, Hsu D, Hammond S, Hobeika A, Devi G, Clay TM, et al. Metastatic colorectal cancer cells from patients previously treated with chemotherapy are sensitive to T-cell killing mediated by CEA/CD3-bispecific T-cell-engaging BiTE antibody. Br J Cancer. 2010;102:124–33.PubMedCentralCrossRefPubMed Osada T, Hsu D, Hammond S, Hobeika A, Devi G, Clay TM, et al. Metastatic colorectal cancer cells from patients previously treated with chemotherapy are sensitive to T-cell killing mediated by CEA/CD3-bispecific T-cell-engaging BiTE antibody. Br J Cancer. 2010;102:124–33.PubMedCentralCrossRefPubMed
33.
go back to reference Tretter CP, Lewis LD, Fisher J, Waugh MG, Ernstoff MS. Taxanes synergize with the bispecific antibody MDXH447 to enhance antibody-dependent cell-mediated cytotoxicity. J Chemother. 2003;15:472–9.PubMed Tretter CP, Lewis LD, Fisher J, Waugh MG, Ernstoff MS. Taxanes synergize with the bispecific antibody MDXH447 to enhance antibody-dependent cell-mediated cytotoxicity. J Chemother. 2003;15:472–9.PubMed
34.
go back to reference Li W, Fan D, Yang M, Yan Y, Shi R, Cheng J, et al. Cytosine arabinoside promotes cytotoxic effect of T cells on leukemia cells mediated by bispecific antibody. Hum Gene Ther. 2013;24:751–60.PubMedCentralCrossRefPubMed Li W, Fan D, Yang M, Yan Y, Shi R, Cheng J, et al. Cytosine arabinoside promotes cytotoxic effect of T cells on leukemia cells mediated by bispecific antibody. Hum Gene Ther. 2013;24:751–60.PubMedCentralCrossRefPubMed
35.
go back to reference Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011;29:532–43.CrossRefPubMed Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011;29:532–43.CrossRefPubMed
37.
go back to reference Vereecque R, Saudemont A, Quesnel B. Cytosine arabinoside induces costimulatory molecule expression in acute myeloid leukemia cells. Leukemia. 2004;18:1223–30.CrossRefPubMed Vereecque R, Saudemont A, Quesnel B. Cytosine arabinoside induces costimulatory molecule expression in acute myeloid leukemia cells. Leukemia. 2004;18:1223–30.CrossRefPubMed
38.
go back to reference Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE, et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med. 2000;6:1018–23.CrossRefPubMed Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE, et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med. 2000;6:1018–23.CrossRefPubMed
39.
go back to reference Rezvani K, Grube M, Brenchley JM, Sconocchia G, Fujiwara H, Price DA, et al. Functional leukemia-associated antigen-specific memory CD8+ T cells exist in healthy individuals and in patients with chronic myelogenous leukemia before and after stem cell transplantation. Blood. 2003;102:2892–900.CrossRefPubMed Rezvani K, Grube M, Brenchley JM, Sconocchia G, Fujiwara H, Price DA, et al. Functional leukemia-associated antigen-specific memory CD8+ T cells exist in healthy individuals and in patients with chronic myelogenous leukemia before and after stem cell transplantation. Blood. 2003;102:2892–900.CrossRefPubMed
40.
go back to reference van der Most RG, Curie A, Cleaver A, Salmons J, Nowak AK, Mahendran S, et al. Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8+ T cell-mediated immune attack resulting in suppression of tumor growth. PLoS One. 2009;4:e6982.PubMedCentralCrossRefPubMed van der Most RG, Curie A, Cleaver A, Salmons J, Nowak AK, Mahendran S, et al. Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8+ T cell-mediated immune attack resulting in suppression of tumor growth. PLoS One. 2009;4:e6982.PubMedCentralCrossRefPubMed
42.
go back to reference Seo N, Tokura Y. Downregulation of innate and acquired antitumor immunity by bystander gammadelta and alphabeta T lymphocytes with Th2 or Tr1 cytokine profiles. J Interferon Cytokine Res. 1999;19:555–61.CrossRefPubMed Seo N, Tokura Y. Downregulation of innate and acquired antitumor immunity by bystander gammadelta and alphabeta T lymphocytes with Th2 or Tr1 cytokine profiles. J Interferon Cytokine Res. 1999;19:555–61.CrossRefPubMed
43.
go back to reference Krupka C, Kufer P, Kischel R, Zugmaier G, Bögeholz J, Köhnke T, et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood. 2014;123:356–65.CrossRefPubMed Krupka C, Kufer P, Kischel R, Zugmaier G, Bögeholz J, Köhnke T, et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood. 2014;123:356–65.CrossRefPubMed
44.
go back to reference Laszlo GS, Gudgeon CJ, Harrington KH, Dell’Aringa J, Newhall KJ, Means GD, et al. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood. 2014;123:554–61.PubMedCentralCrossRefPubMed Laszlo GS, Gudgeon CJ, Harrington KH, Dell’Aringa J, Newhall KJ, Means GD, et al. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood. 2014;123:554–61.PubMedCentralCrossRefPubMed
45.
go back to reference Aigner M, Feulner J, Schaffer S, Kischel R, Kufer P, Schneider K, et al. T lymphocytes can be effectively recruited for ex vivo and in vivo lysis of AML blasts by a novel CD33/CD3-bispecific BiTE antibody construct. Leukemia. 2013;27:1107–15.CrossRefPubMed Aigner M, Feulner J, Schaffer S, Kischel R, Kufer P, Schneider K, et al. T lymphocytes can be effectively recruited for ex vivo and in vivo lysis of AML blasts by a novel CD33/CD3-bispecific BiTE antibody construct. Leukemia. 2013;27:1107–15.CrossRefPubMed
46.
go back to reference Kritas SK, Saggini A, Cerulli G, Caraffa A, Antinolfi P, Pantalone A, et al. Interrelationship between IL-3 and mast cells. J Biol Regul Homeost Agents. 2014;28:17–21.PubMed Kritas SK, Saggini A, Cerulli G, Caraffa A, Antinolfi P, Pantalone A, et al. Interrelationship between IL-3 and mast cells. J Biol Regul Homeost Agents. 2014;28:17–21.PubMed
47.
go back to reference Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 2014;20(2):119–22.PubMedCentralCrossRefPubMed Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 2014;20(2):119–22.PubMedCentralCrossRefPubMed
48.
go back to reference Klinger M, Brandl C, Zugmaier G, et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood. 2012;119:6226–33.CrossRefPubMed Klinger M, Brandl C, Zugmaier G, et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood. 2012;119:6226–33.CrossRefPubMed
50.
go back to reference Shi L, Chen S, Yang L, Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J Hematol Oncol. 2013;6:74.PubMedCentralCrossRefPubMed Shi L, Chen S, Yang L, Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J Hematol Oncol. 2013;6:74.PubMedCentralCrossRefPubMed
51.
go back to reference Lee DW, Barrett DM, Mackall C, et al. The future is now: chimeric antigen receptors as new targeted therapies for childhood cancer. Clin Cancer Res. 2012;18:2780–90.PubMedCentralCrossRefPubMed Lee DW, Barrett DM, Mackall C, et al. The future is now: chimeric antigen receptors as new targeted therapies for childhood cancer. Clin Cancer Res. 2012;18:2780–90.PubMedCentralCrossRefPubMed
52.
go back to reference Urbanska K, Lynn RC, Stashwick C, Thakur A, Lum LG, Powell DJ Jr. Targeted cancer immunotherapy via combination of designer bispecific antibody and novel gene-engineered T cells. J Transl Med. 2014;12:347-59 Urbanska K, Lynn RC, Stashwick C, Thakur A, Lum LG, Powell DJ Jr. Targeted cancer immunotherapy via combination of designer bispecific antibody and novel gene-engineered T cells. J Transl Med. 2014;12:347-59
53.
go back to reference Ailles LE, Gerhard B, Kawagoe H, Hogge DE. Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood. 1999;94:1761–72.PubMed Ailles LE, Gerhard B, Kawagoe H, Hogge DE. Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood. 1999;94:1761–72.PubMed
Metadata
Title
Redirection of CD4+ and CD8+ T lymphocytes via an anti-CD3 × anti-CD19 bi-specific antibody combined with cytosine arabinoside and the efficient lysis of patient-derived B-ALL cells
Authors
Dongmei Fan
Wei Li
Yuqi Yang
Xiaolong Zhang
Qing Zhang
Yan Yan
Ming Yang
Jianxiang Wang
Dongsheng Xiong
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2015
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-015-0205-6

Other articles of this Issue 1/2015

Journal of Hematology & Oncology 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine