Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2015

Open Access 01-12-2015 | Research Article

TMEM140 is associated with the prognosis of glioma by promoting cell viability and invasion

Authors: Bin Li, Ming-Zhu Huang, Xiao-Qiang Wang, Bang-Bao Tao, Jun Zhong, Xu-Hui Wang, Wen-Chuan Zhang, Shi-Ting Li

Published in: Journal of Hematology & Oncology | Issue 1/2015

Login to get access

Abstract

Background

Gliomas are the most common types of primary brain tumors in the adult central nervous system. TMEM140 is identified as an amplified gene in the human gastric cancer genome. However, the function of TMEM140 in gliomas has not been thoroughly elucidated. The aim of the current study was to determine the clinical significance of TMEM140 expression in patients with gliomas and its effect on tumor cell malignant phenotypes.

Methods

Immunohistochemical analysis and real-time reverse transcription PCR were performed to detect the expression levels of TMEM140 in 70 glioma brain tissue samples. Next, the correlation between the TMEM140 expression levels and the clinical characteristics and outcomes of glioma patients was statistically analyzed. TMEM140 expression was inhibited in two glioma cell lines (i.e., U87 and U373) using a knockdown method with small interfering RNA. Cell Counting Kit-8 and Transwell assays were used to investigate TMEM140 function during cell proliferation, invasion, and migration, respectively. Using flow cytometry and Western blot analysis, we subsequently determined the cell cycle and apoptosis profile of the TMEM140-silenced cells.

Results

TMEM140 protein expression was significantly higher in gliomas than in normal brain tissues (p < 0.0001). TMEM140 overexpression was strongly correlated with tumor size, histologic grade, and overall survival time (P < 0.05). TMEM140 decreased cell viability in vitro and dramatically decreased tumor volume in vivo. This phenomenon might be caused by G1 phase cell cycle arrest and cell apoptosis. TMEM140 silencing could suppress the viability, migration, and invasion of glioma cells.

Conclusions

Our results suggest that TMEM140 expression is a prognostic factor that might play an important role in the viability, migration, and invasion of glioma cells. This study highlights the importance of TMEM140 as a novel prognostic marker and as an attractive therapeutic target for gliomas.
Literature
3.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. doi:10.1056/NEJMoa043330.CrossRefPubMed Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. doi:10.​1056/​NEJMoa043330.CrossRefPubMed
7.
go back to reference Davis FG, Freels S, Grutsch J, Barlas S, Brem S. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973–1991. J Neurosurg. 1998;88(1):1–10. doi:10.3171/jns.1998.88.1.0001.CrossRefPubMed Davis FG, Freels S, Grutsch J, Barlas S, Brem S. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973–1991. J Neurosurg. 1998;88(1):1–10. doi:10.​3171/​jns.​1998.​88.​1.​0001.CrossRefPubMed
8.
9.
go back to reference Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN. CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res. 1996;56(1):150–3.PubMed Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN. CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res. 1996;56(1):150–3.PubMed
10.
go back to reference Schmidt EE, Ichimura K, Reifenberger G, Collins VP. CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res. 1994;54(24):6321–4.PubMed Schmidt EE, Ichimura K, Reifenberger G, Collins VP. CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res. 1994;54(24):6321–4.PubMed
11.
go back to reference England B, Huang T, Karsy M. Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2013;34(4):2063–74. doi:10.1007/s13277-013-0871-3.CrossRef England B, Huang T, Karsy M. Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2013;34(4):2063–74. doi:10.​1007/​s13277-013-0871-3.CrossRef
12.
13.
15.
18.
go back to reference Yang S. Gene amplifications at chromosome 7 of the human gastric cancer genome. International journal of molecular medicine. 2007;20(2):225–31.PubMed Yang S. Gene amplifications at chromosome 7 of the human gastric cancer genome. International journal of molecular medicine. 2007;20(2):225–31.PubMed
20.
go back to reference Korc M, Meltzer P, Trent J. Enhanced expression of epidermal growth factor receptor correlates with alterations of chromosome 7 in human pancreatic cancer. Proc Natl Acad Sci U S A. 1986;83(14):5141–4.PubMedCentralCrossRefPubMed Korc M, Meltzer P, Trent J. Enhanced expression of epidermal growth factor receptor correlates with alterations of chromosome 7 in human pancreatic cancer. Proc Natl Acad Sci U S A. 1986;83(14):5141–4.PubMedCentralCrossRefPubMed
21.
go back to reference Waldman FM, Carroll PR, Kerschmann R, Cohen MB, Field FG, Mayall BH. Centromeric copy number of chromosome 7 is strongly correlated with tumor grade and labeling index in human bladder cancer. Cancer Res. 1991;51(14):3807–13.PubMed Waldman FM, Carroll PR, Kerschmann R, Cohen MB, Field FG, Mayall BH. Centromeric copy number of chromosome 7 is strongly correlated with tumor grade and labeling index in human bladder cancer. Cancer Res. 1991;51(14):3807–13.PubMed
22.
go back to reference Alcaraz A, Takahashi S, Brown JA, Herath JF, Bergstralh EJ, Larson-Keller JJ, et al. Aneuploidy and aneusomy of chromosome 7 detected by fluorescence in situ hybridization are markers of poor prognosis in prostate cancer. Cancer Res. 1994;54(15):3998–4002.PubMed Alcaraz A, Takahashi S, Brown JA, Herath JF, Bergstralh EJ, Larson-Keller JJ, et al. Aneuploidy and aneusomy of chromosome 7 detected by fluorescence in situ hybridization are markers of poor prognosis in prostate cancer. Cancer Res. 1994;54(15):3998–4002.PubMed
23.
go back to reference Lee JS, Pathak S, Hopwood V, Tomasovic B, Mullins TD, Baker FL, et al. Involvement of chromosome 7 in primary lung tumor and nonmalignant normal lung tissue. Cancer Res. 1987;47(23):6349–52.PubMed Lee JS, Pathak S, Hopwood V, Tomasovic B, Mullins TD, Baker FL, et al. Involvement of chromosome 7 in primary lung tumor and nonmalignant normal lung tissue. Cancer Res. 1987;47(23):6349–52.PubMed
25.
go back to reference Bieche I, Champeme MH, Matifas F, Hacene K, Callahan R, Lidereau R. Loss of heterozygosity on chromosome 7q and aggressive primary breast cancer. Lancet. 1992;339(8786):139–43.CrossRefPubMed Bieche I, Champeme MH, Matifas F, Hacene K, Callahan R, Lidereau R. Loss of heterozygosity on chromosome 7q and aggressive primary breast cancer. Lancet. 1992;339(8786):139–43.CrossRefPubMed
32.
go back to reference Gu F, Wang L, He J, Liu X, Zhang H, Li W, et al. Girdin, an actin-binding protein, is critical for migration, adhesion, and invasion of human glioblastoma cells. J Neurochem. 2014;131(4):457–69. doi:10.1111/jnc.12831.CrossRefPubMed Gu F, Wang L, He J, Liu X, Zhang H, Li W, et al. Girdin, an actin-binding protein, is critical for migration, adhesion, and invasion of human glioblastoma cells. J Neurochem. 2014;131(4):457–69. doi:10.​1111/​jnc.​12831.CrossRefPubMed
36.
go back to reference Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 2013;45(11):1392–8. doi:10.1038/ng.2771.CrossRefPubMed Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 2013;45(11):1392–8. doi:10.​1038/​ng.​2771.CrossRefPubMed
Metadata
Title
TMEM140 is associated with the prognosis of glioma by promoting cell viability and invasion
Authors
Bin Li
Ming-Zhu Huang
Xiao-Qiang Wang
Bang-Bao Tao
Jun Zhong
Xu-Hui Wang
Wen-Chuan Zhang
Shi-Ting Li
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2015
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-015-0187-4

Other articles of this Issue 1/2015

Journal of Hematology & Oncology 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine