Skip to main content
Top
Published in: Patient Safety in Surgery 1/2018

Open Access 01-12-2018 | Research

Predictors of hydrocephalus as a complication of non-traumatic subarachnoid hemorrhage: a retrospective observational cohort study in 107 patients

Authors: Juan Manuel Vinas Rios, Martin Sanchez-Aguilar, Thomas Kretschmer, Christian Heinen, Fatima Azucena Medina Govea , Sanchez-Rodriguez Jose Juan, Thomas Schmidt

Published in: Patient Safety in Surgery | Issue 1/2018

Login to get access

Abstract

Background

The predictors of shunt dependency such as amount of subarachnoid blood, acute hydrocephalus (HC), mode of aneurysm repair, clinical grade at admission and cerebro spinal fluid (CSF) drainage in excess of 1500 ml during the 1st week after the subarachnoid hemorrhage (SAH) have been identified as predictors of shunt dependency. Therefore our main objective is to identify predictors of CSF shunt dependency following non-traumatic subarachnoid hemorrhage.

Methods

We performed a retrospective study including patients from January 1st 2012 to September 30th 2014 between 16 and 89 years old and had a non-traumatic subarachnoid hemorrhage in cranial computed tomography (CCT). We excluded patients with the following characteristics: Patients who died 3 days after admittance, lesions in brainstem, previous surgical treatment in another clinic, traumatic brain injury, pregnancy and disability prior to SAH.
We performed a descriptive and comparative analysis as well as a logistic regression with the variables that showed a significant difference (p < 0.05). Hence we identified the variables concerning HC after non traumatic SAH and its correlation.

Results

One hundred and seven clinical files of patients with non-traumatic SAH were analyzed. Twenty one (48%) later underwent shunt treatment. Shunt patients had significantly clinical and corroborated with doppler ultrasonography vasospasmus (p = 0.015), OR = 5.2. The amount of subarachnoidal blood according to modified Fisher grade was (p = 0.008) OR = 10.9. Endovascularly treated patients were less often shunted as compared with those undergoing surgical aneurysm repair (p = 0.004).

Conclusion

Vasospasmus and a large amount of ventricular blood seem to be a predictor concerning hydrocephalus after non-traumatic SAH. Hence according to our results the presence of these two variables could alert the treating physician in the decision whether an early shunt implantation < 7 days after SAH should be necessary.
Literature
1.
go back to reference van Lieshout JH, Fischer I, Kamp MA, et al. Subarachnoid hemorrhage in Germany between 2010 and 2013: estimated incidence rates based on a Nationwide Hospital discharge registry. World Neurosurg. 2017;104:516–21.CrossRefPubMed van Lieshout JH, Fischer I, Kamp MA, et al. Subarachnoid hemorrhage in Germany between 2010 and 2013: estimated incidence rates based on a Nationwide Hospital discharge registry. World Neurosurg. 2017;104:516–21.CrossRefPubMed
2.
go back to reference Connolly ES Jr, Rabinstelll AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke. 2012;43:1711–37.CrossRefPubMed Connolly ES Jr, Rabinstelll AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke. 2012;43:1711–37.CrossRefPubMed
3.
go back to reference Dehdashti AR, Rilliet B, Rufenacht DA, de Tribolet N. Shunt- dependent hydrocephalus after rupture of intracranial aneurysms: a prospective study of the influence of treatment modality. J Neurosurg. 2004;101:402–7.CrossRefPubMed Dehdashti AR, Rilliet B, Rufenacht DA, de Tribolet N. Shunt- dependent hydrocephalus after rupture of intracranial aneurysms: a prospective study of the influence of treatment modality. J Neurosurg. 2004;101:402–7.CrossRefPubMed
4.
go back to reference Auer LM, Mokry M. Disturbed cerebrospinal fluid circulation after subarachnoid hemorrhage and acute aneurysm surgery. Neurosurgew. 1990;26:804–8. discussion 808—809CrossRef Auer LM, Mokry M. Disturbed cerebrospinal fluid circulation after subarachnoid hemorrhage and acute aneurysm surgery. Neurosurgew. 1990;26:804–8. discussion 808—809CrossRef
5.
go back to reference Tapaninaho A, Hernesniemi J, Vapalahti M, et al. Shunt-dependent hydrocephalus after subarachnoid haemorrhage and aneurysm surgery: timing of surgery is not a risk factor. Acta Neurochir. 1993;123:118–24.CrossRefPubMed Tapaninaho A, Hernesniemi J, Vapalahti M, et al. Shunt-dependent hydrocephalus after subarachnoid haemorrhage and aneurysm surgery: timing of surgery is not a risk factor. Acta Neurochir. 1993;123:118–24.CrossRefPubMed
6.
go back to reference Yoshioka H, Inagawa T, Tokuda Y, et al. Chronic hydrocephalus in elderly patients following subarachnoid hemorrhage. Surg Neurol. 2000;53:119–24. discussion 124–115CrossRefPubMed Yoshioka H, Inagawa T, Tokuda Y, et al. Chronic hydrocephalus in elderly patients following subarachnoid hemorrhage. Surg Neurol. 2000;53:119–24. discussion 124–115CrossRefPubMed
7.
go back to reference de Oliveira JG, Beck J, Setzer M, et al. Risk of shunt-dependent hydrocephalus afier occlusion of ruptured intracranial aneurysms by surgical clipping or endovascular coiling: a single-institution series and meta-analysis. Neurosurgery. 2007;61:924–33. discussion 933—924CrossRefPubMed de Oliveira JG, Beck J, Setzer M, et al. Risk of shunt-dependent hydrocephalus afier occlusion of ruptured intracranial aneurysms by surgical clipping or endovascular coiling: a single-institution series and meta-analysis. Neurosurgery. 2007;61:924–33. discussion 933—924CrossRefPubMed
8.
go back to reference Demirgil BT, Tugcu B, Postalci L, et al. Factors leading to hydrocephalus after aneurysmal subarachnoid hemorrhage. Minim Invasive Neurosurg. 2003;46:344–8.CrossRefPubMed Demirgil BT, Tugcu B, Postalci L, et al. Factors leading to hydrocephalus after aneurysmal subarachnoid hemorrhage. Minim Invasive Neurosurg. 2003;46:344–8.CrossRefPubMed
9.
go back to reference Dorai Z, Hynan LS, Kopitnik TA, et al. Factors related to hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2003;52:763–9. discussion 769—771CrossRefPubMed Dorai Z, Hynan LS, Kopitnik TA, et al. Factors related to hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2003;52:763–9. discussion 769—771CrossRefPubMed
10.
go back to reference Klopfenstein JD, Kim LJ, Feiz-Erfan I, et al. Comparison of rapid and gradual weaning from external ventricular drainage in patients with aneurysmal subarachnoid hemorrhage: a prospective randomized trial. J Neurosurg. 2004;100:225–9.CrossRefPubMed Klopfenstein JD, Kim LJ, Feiz-Erfan I, et al. Comparison of rapid and gradual weaning from external ventricular drainage in patients with aneurysmal subarachnoid hemorrhage: a prospective randomized trial. J Neurosurg. 2004;100:225–9.CrossRefPubMed
11.
go back to reference Kolluri VR, Sengupta RP. Symptomatic hydrocephalus following aneurysmal subarachnoid hemorrhage. Surg Neurol. 1984;21:402–4.CrossRefPubMed Kolluri VR, Sengupta RP. Symptomatic hydrocephalus following aneurysmal subarachnoid hemorrhage. Surg Neurol. 1984;21:402–4.CrossRefPubMed
12.
go back to reference Woernle CM, Winkler KM, Burkhardt JK, et al. Hydrocephalus in 389 patients with aneurysm-associated subarachnoid hemorrhage. J Clin Neurosci Off J Neurosurg Soc Australas. 2013;20:824–6. Woernle CM, Winkler KM, Burkhardt JK, et al. Hydrocephalus in 389 patients with aneurysm-associated subarachnoid hemorrhage. J Clin Neurosci Off J Neurosurg Soc Australas. 2013;20:824–6.
13.
go back to reference Yang TC, Chang CH, Liu YT, et al. Predictors of shunt-dependent chronic hydrocephalus after aneurysmal subarachnoid haemorrhage. Eur Neurol. 2013;69:296–303.CrossRefPubMed Yang TC, Chang CH, Liu YT, et al. Predictors of shunt-dependent chronic hydrocephalus after aneurysmal subarachnoid haemorrhage. Eur Neurol. 2013;69:296–303.CrossRefPubMed
14.
go back to reference Eide PK, Sorteberg W. Diagnostic intracranial pressure monitoring and surgical management in idiopathic normal pressure hydrocephalus: a 6-year review of214 patients. Neurosurgery. 2010;66:80–91.CrossRefPubMed Eide PK, Sorteberg W. Diagnostic intracranial pressure monitoring and surgical management in idiopathic normal pressure hydrocephalus: a 6-year review of214 patients. Neurosurgery. 2010;66:80–91.CrossRefPubMed
15.
go back to reference Korinek AM, Fulla-Oller L, Boch AL, et al. Morbidity of ventricular cerebrospinal fluid shunt surgery in adults: an 8-year study. Neurosurgery. 2011;68:985–94. discussion 994—985CrossRefPubMed Korinek AM, Fulla-Oller L, Boch AL, et al. Morbidity of ventricular cerebrospinal fluid shunt surgery in adults: an 8-year study. Neurosurgery. 2011;68:985–94. discussion 994—985CrossRefPubMed
16.
go back to reference Misaki K, Uchiyama N, Hayashi Y, et al. Intracerebralhemorrhage secondary to ventriculoperitoneal shunt insertion–four case reports. Neurol Med Chir. 2010;50:76–9.CrossRef Misaki K, Uchiyama N, Hayashi Y, et al. Intracerebralhemorrhage secondary to ventriculoperitoneal shunt insertion–four case reports. Neurol Med Chir. 2010;50:76–9.CrossRef
17.
go back to reference Reddy GK, Bollam P, Shi R, et al. Management of adult hydrocephalus with ventriculoperitoneal shunts: long-term single-institution experience. Neurosurgery. 2011;69:774–80. discussion 780–771CrossRefPubMed Reddy GK, Bollam P, Shi R, et al. Management of adult hydrocephalus with ventriculoperitoneal shunts: long-term single-institution experience. Neurosurgery. 2011;69:774–80. discussion 780–771CrossRefPubMed
18.
go back to reference Wong JM, Ziewacz JE, Ho AL, et al. Patterns in neurosurgical adverse events: cerebrospinal fluid shunt surgery. Neurosurg Focus. 2012;33:E13.CrossRefPubMed Wong JM, Ziewacz JE, Ho AL, et al. Patterns in neurosurgical adverse events: cerebrospinal fluid shunt surgery. Neurosurg Focus. 2012;33:E13.CrossRefPubMed
19.
go back to reference Rincon F, Gordon E, Starke RM, et al. Predictors of long-term shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage. Clin Artic J Neurosurg. 2010;113:774–80.CrossRef Rincon F, Gordon E, Starke RM, et al. Predictors of long-term shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage. Clin Artic J Neurosurg. 2010;113:774–80.CrossRef
20.
go back to reference Sugawara T, Maehara T, Nariai T, et al. Independent predictors of shunt-dependent normal pressure hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurosurg Sci. 2016;60(2):154–8.PubMed Sugawara T, Maehara T, Nariai T, et al. Independent predictors of shunt-dependent normal pressure hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurosurg Sci. 2016;60(2):154–8.PubMed
21.
go back to reference Kwon JH, Sung SK, Song YJ, et al. Predisposing factors related to shunt-dependent chronic hydrocephalus after aneurysmal subarachnoid hemorrhage. J Korean Neurosurg Soc. 2008;43:177–81.CrossRefPubMedPubMedCentral Kwon JH, Sung SK, Song YJ, et al. Predisposing factors related to shunt-dependent chronic hydrocephalus after aneurysmal subarachnoid hemorrhage. J Korean Neurosurg Soc. 2008;43:177–81.CrossRefPubMedPubMedCentral
22.
go back to reference Lai L, Morgan MK. Predictors of in-hospital shunt-dependenthydrocephalus following rupture of cerebral aneurysms. J Clin Neurosci. 2013;20:1134–8.CrossRefPubMed Lai L, Morgan MK. Predictors of in-hospital shunt-dependenthydrocephalus following rupture of cerebral aneurysms. J Clin Neurosci. 2013;20:1134–8.CrossRefPubMed
23.
go back to reference Erixon HO, Sorteberg A, Sorteberg W, et al. Predictors of shunt dependency after aneurysmal subarachnoid hemorrhage: results of a single-center clinical trial. Acta Neurochir. 2014;156:2059–69.CrossRefPubMed Erixon HO, Sorteberg A, Sorteberg W, et al. Predictors of shunt dependency after aneurysmal subarachnoid hemorrhage: results of a single-center clinical trial. Acta Neurochir. 2014;156:2059–69.CrossRefPubMed
24.
go back to reference Jovanovi V, Tasić G, Djurović B, et al. Hydrocephalic risk factors after spontaneous subarachnoidal haemorrhaging of aneurysmal aetiology. Srp Arh Celok Lek. 2005;133(9-10):401–5.CrossRefPubMed Jovanovi V, Tasić G, Djurović B, et al. Hydrocephalic risk factors after spontaneous subarachnoidal haemorrhaging of aneurysmal aetiology. Srp Arh Celok Lek. 2005;133(9-10):401–5.CrossRefPubMed
25.
go back to reference Hirashima Y, Hamada H, Hayashi N, et al. Independent predictors of late hydrocephalus in patients with aneurysmal subarachnoid hemorrhage--analysis by multivariate logistic regression model. Cerebrovasc Dis. 2003;16:205–10.CrossRefPubMed Hirashima Y, Hamada H, Hayashi N, et al. Independent predictors of late hydrocephalus in patients with aneurysmal subarachnoid hemorrhage--analysis by multivariate logistic regression model. Cerebrovasc Dis. 2003;16:205–10.CrossRefPubMed
26.
go back to reference Kanat A, Turkmenoglu O, Aydin MD, et al. Toward changing of the pathophysiologic basis of acute hydrocephalus after subarachnoid hemorrhage: a preliminary experimental study. World Neurosurg. 2013;80:390–5.CrossRefPubMed Kanat A, Turkmenoglu O, Aydin MD, et al. Toward changing of the pathophysiologic basis of acute hydrocephalus after subarachnoid hemorrhage: a preliminary experimental study. World Neurosurg. 2013;80:390–5.CrossRefPubMed
27.
go back to reference Hoh BL, Kleinhenz DT, Chi YY, et al. Incidence of ventricular shunt placement for hydrocephalus with clipping versus coiling for ruptured and unruptured cerebral aneurysms in the Nationwide inpatient sample database: 2002 to 2007. World Neurosurg. 2011;76:548–54.CrossRefPubMed Hoh BL, Kleinhenz DT, Chi YY, et al. Incidence of ventricular shunt placement for hydrocephalus with clipping versus coiling for ruptured and unruptured cerebral aneurysms in the Nationwide inpatient sample database: 2002 to 2007. World Neurosurg. 2011;76:548–54.CrossRefPubMed
28.
go back to reference Goergen SK, Barrie D, Sacharias N, et al. Perimesencephalic subarachnoid haemorrhage: negative angiography and favourable prognosis. Australas Radiol. 1993;37(2):156–60.CrossRefPubMed Goergen SK, Barrie D, Sacharias N, et al. Perimesencephalic subarachnoid haemorrhage: negative angiography and favourable prognosis. Australas Radiol. 1993;37(2):156–60.CrossRefPubMed
29.
go back to reference Grand W, Chamczuk AJ, Leonardo J, et al. Endoscopic third ventriculostomy for hydrocephalus after perimesencephalic subarachnoid hemorrhage: initial experience in three patients. Acta Neurochir. 2011;153(10):2049–55. discussion 2055-6CrossRefPubMed Grand W, Chamczuk AJ, Leonardo J, et al. Endoscopic third ventriculostomy for hydrocephalus after perimesencephalic subarachnoid hemorrhage: initial experience in three patients. Acta Neurochir. 2011;153(10):2049–55. discussion 2055-6CrossRefPubMed
30.
go back to reference Sorteberg W, Slettebo H, Eide PK, et al. Surgical treatment of aneurysmal subarachnoid haemorrhage in the presence of 24-h endovascular availability: management and results. Br J Neurosurg. 2008;22:53–62.CrossRefPubMed Sorteberg W, Slettebo H, Eide PK, et al. Surgical treatment of aneurysmal subarachnoid haemorrhage in the presence of 24-h endovascular availability: management and results. Br J Neurosurg. 2008;22:53–62.CrossRefPubMed
Metadata
Title
Predictors of hydrocephalus as a complication of non-traumatic subarachnoid hemorrhage: a retrospective observational cohort study in 107 patients
Authors
Juan Manuel Vinas Rios
Martin Sanchez-Aguilar
Thomas Kretschmer
Christian Heinen
Fatima Azucena Medina Govea
Sanchez-Rodriguez Jose Juan
Thomas Schmidt
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Patient Safety in Surgery / Issue 1/2018
Electronic ISSN: 1754-9493
DOI
https://doi.org/10.1186/s13037-018-0160-6

Other articles of this Issue 1/2018

Patient Safety in Surgery 1/2018 Go to the issue