Skip to main content
Top
Published in: Patient Safety in Surgery 1/2017

Open Access 01-12-2017 | Research

Length of stay, costs, and complications in lumbar disc herniation surgery by standard PLIF versus a new dynamic interspinous stabilization technique

Authors: Manuel Segura-Trepichio, David Candela-Zaplana, José Manuel Montoza-Nuñez, Antonio Martin-Benlloch, Andreu Nolasco

Published in: Patient Safety in Surgery | Issue 1/2017

Login to get access

Abstract

Background

The number of lumbar spine surgeries has been increasing during the last 20 years, which also leads to an increase in hospital costs and complications related to surgery. Therefore, there is a greater concern about the costs and safety of the techniques and implants used.

Methods

Patients (aged from 18 to 50 years) presenting with lumbago /sciatica (ICD-10-CM M54.3, M54.4) due to lumbar disc herniation lasting more than 12 weeks, were included. Patients with disc herniation larger than size-2 or size-3 according to the MSU Classification were eligible for participation. Intervention was divided in two groups. In Group 1, patients underwent microdiscectomy and Interspinous Dynamic Stabilization System (IDSS). Meanwhile, in Group 2, patients received discectomy and posterior lumbar interbody fusion (PLIF). The primary outcome measure was the length of stay and costs during hospital admission. We also evaluated several other outcome parameters, including 90- day readmission rate, 90-day complication rate, and re-operations rate. The study was an observational prospective cohort study carried out from January 2015 to August 2016 in which two surgical techniques were compared. Our hypothesis was that a less aggressive procedure, such as discectomy and DSS, will decrease the length of stay and costs, and that it will also reduce the rate of complications with respect to PLIF.

Results

A total of 67 patients (mean age 39.8 ± 8.4 years) were included. Patients in the PLIF group had a length of stay increase of 109% (4.52 ± 1.76 days vs 2.16 ± 1.18 days p < 0.001) and an in-hospital cost increase of 71% (1821.97 ± 460.41€ vs. 1066.20 ± 284.34€ p < 0.001). The reduction of one day of stay is equivalent to a reduction of total in-hospital costs of 12.5%. Patients in the IDSS cohort had no significant differences regarding PLIF cohort in the 90-day readmission rate (12.9% vs 11.1% € p > 0.999, respectively), 90-day re-operation rate (12.9% vs 11.1% € p > 0.999) and 90-day complication rates (35.5% vs 52.8% € p > 0.156). Dural tear and urinary tract infection rates were higher in the PLIF cohort (13.9% vs 3.2%. p = 0.205 and 11.1% vs 0% p = 0.118, respectively). Implant related complications were the most frequent in both IDSS and PLIF groups (32.3% vs 38.9% p = 0.572).

Conclusions

Patients who underwent IDSS had a significant decrease of the length of stay and costs in relation to PLIF group. No significant differences were found in 90-day readmission and reintervention rates for both groups. Although differences were not significant, dural tear and urinary tract infection rates were lower in the interspinous group. IDSS or PLIF after discectomy, did not protect against subsequent 90-day re-operation or readmission compared to discectomy alone.
Literature
2.
go back to reference Jordan J, Konstantinou K, O'Dowd J. Herniated lumbar disc. BMJ Clin Evid. 2009;2009. Review. PubMed PMID: 19445754; PubMed Central PMCID: PMC2907819. Jordan J, Konstantinou K, O'Dowd J. Herniated lumbar disc. BMJ Clin Evid. 2009;2009. Review. PubMed PMID: 19445754; PubMed Central PMCID: PMC2907819.
3.
go back to reference Heliövaara M, Knekt P, Aromaa A. Incidence and risk factors of herniated lumbar intervertebral disc or sciatica leading to hospitalization. J Chronic Dis. 1987;40:251–8.CrossRefPubMed Heliövaara M, Knekt P, Aromaa A. Incidence and risk factors of herniated lumbar intervertebral disc or sciatica leading to hospitalization. J Chronic Dis. 1987;40:251–8.CrossRefPubMed
4.
go back to reference Weinstein JN, Lurie JD, Olson PR, Bronner KK, Fisher ES. United States’ trends and regional variations in lumbar spine surgery: 1992-2003. Spine (Phila Pa 1976). 2006;31:2707–14.CrossRef Weinstein JN, Lurie JD, Olson PR, Bronner KK, Fisher ES. United States’ trends and regional variations in lumbar spine surgery: 1992-2003. Spine (Phila Pa 1976). 2006;31:2707–14.CrossRef
5.
go back to reference Aizawa T, Kokubun S, Ozawa H, et al. Increasing incidence of degenerative spinal diseases in Japan during 25 years: the registration system of spinal surgery in Tohoku University spine society. Tohoku J Exp Med. 2016;238:153–63. doi:10.1620/tjem.238.153.CrossRefPubMed Aizawa T, Kokubun S, Ozawa H, et al. Increasing incidence of degenerative spinal diseases in Japan during 25 years: the registration system of spinal surgery in Tohoku University spine society. Tohoku J Exp Med. 2016;238:153–63. doi:​10.​1620/​tjem.​238.​153.CrossRefPubMed
6.
go back to reference Weinstein JN, Tosteson TD, Lurie JD, et al. Surgical vs nonoperative treatment for lumbar disk herniation:the spine patient outcomes research trial (SPORT): a randomized trial. JAMA. 2006;296:2441–50.CrossRefPubMedPubMedCentral Weinstein JN, Tosteson TD, Lurie JD, et al. Surgical vs nonoperative treatment for lumbar disk herniation:the spine patient outcomes research trial (SPORT): a randomized trial. JAMA. 2006;296:2441–50.CrossRefPubMedPubMedCentral
8.
go back to reference Osterman H, Sund R, Seitsalo S, et al. Risk of multiple reoperations after lumbar discectomies: a population-based study. Spine. 2003;28:621–7.PubMed Osterman H, Sund R, Seitsalo S, et al. Risk of multiple reoperations after lumbar discectomies: a population-based study. Spine. 2003;28:621–7.PubMed
10.
go back to reference Kong DS, Kim ES, Eoh W. One-year outcome evaluation after interspinous implantation for degenerative spinal stenosis with segmental instability. J Korean Med Sci. 2007;22:330–5.CrossRefPubMedPubMedCentral Kong DS, Kim ES, Eoh W. One-year outcome evaluation after interspinous implantation for degenerative spinal stenosis with segmental instability. J Korean Med Sci. 2007;22:330–5.CrossRefPubMedPubMedCentral
11.
go back to reference Zeng ZY, Wu P, Song YX, et al. Unilateral pedicle screw fixation combined with contralateral percutaneous translaminar facet screw fixation and lumbar interbody fusion for the treatment of lower lumbar diseases: an analysis of complications. Zhongguo Gu Shang. 2016;29:232–41.PubMed Zeng ZY, Wu P, Song YX, et al. Unilateral pedicle screw fixation combined with contralateral percutaneous translaminar facet screw fixation and lumbar interbody fusion for the treatment of lower lumbar diseases: an analysis of complications. Zhongguo Gu Shang. 2016;29:232–41.PubMed
12.
go back to reference Satoh I, Yonenobu K, Hosono N, Ohwada T, Fuji T, Yoshikawa H. Indication of posterior lumbar interbody fusion for lumbar disc herniation. J Spinal Disord Tech. 2006;19(2):104–8.CrossRefPubMed Satoh I, Yonenobu K, Hosono N, Ohwada T, Fuji T, Yoshikawa H. Indication of posterior lumbar interbody fusion for lumbar disc herniation. J Spinal Disord Tech. 2006;19(2):104–8.CrossRefPubMed
13.
go back to reference Takeshima T, Kambara K, Miyata S, Ueda Y, Tamai S. Clinical and radiographic evaluation of disc excision for lumbar disc herniation with and without posterolateral fusion. Spine (Phila Pa 1976). 2000;25(4):450–6.CrossRef Takeshima T, Kambara K, Miyata S, Ueda Y, Tamai S. Clinical and radiographic evaluation of disc excision for lumbar disc herniation with and without posterolateral fusion. Spine (Phila Pa 1976). 2000;25(4):450–6.CrossRef
14.
go back to reference Wang JC, Dailey AT, Mummaneni PV, Ghogawala Z, Resnick DK, Watters WC 3rd, Groff MW, Choudhri TF, Eck JC, Sharan A, Dhall SS, Kaiser MG. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 8: lumbar fusion for disc herniation and radiculopathy. J Neurosurg Spine. 2014;21(1):48–53.CrossRefPubMed Wang JC, Dailey AT, Mummaneni PV, Ghogawala Z, Resnick DK, Watters WC 3rd, Groff MW, Choudhri TF, Eck JC, Sharan A, Dhall SS, Kaiser MG. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 8: lumbar fusion for disc herniation and radiculopathy. J Neurosurg Spine. 2014;21(1):48–53.CrossRefPubMed
15.
go back to reference Xu D, Xu HZ, Chen YH, et al. Discectomy and discectomy plus Coflex fixation for lumbar disc herniation, a clinical comparison study. Zhonghua Wai Ke Za Zhi. 2013;51:147–51.PubMed Xu D, Xu HZ, Chen YH, et al. Discectomy and discectomy plus Coflex fixation for lumbar disc herniation, a clinical comparison study. Zhonghua Wai Ke Za Zhi. 2013;51:147–51.PubMed
16.
go back to reference Arrotegui I. Using a new implant: U-force N6 to level L5 S1 to avoid lumbar instability after single discectomy. Acta Ortop Mex. 2015;29:309–12.PubMed Arrotegui I. Using a new implant: U-force N6 to level L5 S1 to avoid lumbar instability after single discectomy. Acta Ortop Mex. 2015;29:309–12.PubMed
17.
go back to reference Floman Y, Millgram MA, et al. Failure of the Wallis interspinous implant to lower the incidence of recurrent lumbar disc herniations in patients undergoing primary disc excision. J Spinal Disord Tech. 2007;20:337–41.CrossRefPubMed Floman Y, Millgram MA, et al. Failure of the Wallis interspinous implant to lower the incidence of recurrent lumbar disc herniations in patients undergoing primary disc excision. J Spinal Disord Tech. 2007;20:337–41.CrossRefPubMed
19.
go back to reference Phan K, Kim JS, Somani S,et al. Impact of age on 30-day complications after adult deformity surgery. Spine (Phila Pa 1976). 2016;[Epub ahead of print]. Phan K, Kim JS, Somani S,et al. Impact of age on 30-day complications after adult deformity surgery. Spine (Phila Pa 1976). 2016;[Epub ahead of print].
20.
21.
go back to reference Harrington JF, French P. Open versus minimally invasive lumbar microdiscectomy: comparison of operative times, length of hospital stay, narcotic use and complications. Minim Invasive Neurosurg. 2008;51(1):30–5. doi:10.1055/s-2007-1004543. PubMed PMID: 18306129. Harrington JF, French P. Open versus minimally invasive lumbar microdiscectomy: comparison of operative times, length of hospital stay, narcotic use and complications. Minim Invasive Neurosurg. 2008;51(1):30–5. doi:10.​1055/​s-2007-1004543. PubMed PMID: 18306129.
24.
25.
go back to reference Fujiwara A, Tamai K, Yamato M, et al. The relationship between facet joint osteoarthritis and disc degeneration of the lumbar spine: an MRI study. Eur Spine J. 1999;8:396–401.CrossRefPubMedPubMedCentral Fujiwara A, Tamai K, Yamato M, et al. The relationship between facet joint osteoarthritis and disc degeneration of the lumbar spine: an MRI study. Eur Spine J. 1999;8:396–401.CrossRefPubMedPubMedCentral
26.
go back to reference Pfirrmann CW, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001;26:1873–8.CrossRef Pfirrmann CW, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001;26:1873–8.CrossRef
27.
go back to reference Mirza SK, Deyo RA, Heagerty PJ, et al. Towards standardized measurement of adverse events in spine surgery: conceptual model and pilot evaluation. BMC Musculoskelet Disord. 2006;7:53.CrossRefPubMedPubMedCentral Mirza SK, Deyo RA, Heagerty PJ, et al. Towards standardized measurement of adverse events in spine surgery: conceptual model and pilot evaluation. BMC Musculoskelet Disord. 2006;7:53.CrossRefPubMedPubMedCentral
36.
go back to reference Kalevski S, Peev N, Haritonov D. Incidental Dural tears in lumbar decompressive surgery: incidence, causes, treatment, results. Asian J Neurosurg. 2010;5:54–9.PubMedPubMedCentral Kalevski S, Peev N, Haritonov D. Incidental Dural tears in lumbar decompressive surgery: incidence, causes, treatment, results. Asian J Neurosurg. 2010;5:54–9.PubMedPubMedCentral
38.
go back to reference Stromqvist BH, Berg S, Gerdhem P, Johnsson R, Moller A, et al. X-stop versus decompressive surgery for lumbar neurogenic intermittent claudication: randomized controlled trial with 2-year follow-up. Spine (Phila Pa 1976). 2013;38:1436–42.CrossRef Stromqvist BH, Berg S, Gerdhem P, Johnsson R, Moller A, et al. X-stop versus decompressive surgery for lumbar neurogenic intermittent claudication: randomized controlled trial with 2-year follow-up. Spine (Phila Pa 1976). 2013;38:1436–42.CrossRef
40.
go back to reference Moojen WA, Arts MP, Jacobs WC, et al. Interspinous process device versus standard conventional surgical decompression for lumbar spinal stenosis: randomized controlled trial. BMJ. 2013;347:f6415.CrossRefPubMedPubMedCentral Moojen WA, Arts MP, Jacobs WC, et al. Interspinous process device versus standard conventional surgical decompression for lumbar spinal stenosis: randomized controlled trial. BMJ. 2013;347:f6415.CrossRefPubMedPubMedCentral
42.
go back to reference Hallett A, Huntley JS, Gibson JN. Foraminal stenosis and single-level degenerative disc disease: a randomized controlled trial comparing decompression with decompression and instrumented fusion. Spine (Phila Pa 1976). 2007;32:1375–80.CrossRef Hallett A, Huntley JS, Gibson JN. Foraminal stenosis and single-level degenerative disc disease: a randomized controlled trial comparing decompression with decompression and instrumented fusion. Spine (Phila Pa 1976). 2007;32:1375–80.CrossRef
43.
go back to reference Taheri PA, Butz DA, Greenfield LJ. Length of stay has minimal impact on the cost of hospital admission. J Am Coll Surg. 2000;191:123–30.CrossRefPubMed Taheri PA, Butz DA, Greenfield LJ. Length of stay has minimal impact on the cost of hospital admission. J Am Coll Surg. 2000;191:123–30.CrossRefPubMed
Metadata
Title
Length of stay, costs, and complications in lumbar disc herniation surgery by standard PLIF versus a new dynamic interspinous stabilization technique
Authors
Manuel Segura-Trepichio
David Candela-Zaplana
José Manuel Montoza-Nuñez
Antonio Martin-Benlloch
Andreu Nolasco
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Patient Safety in Surgery / Issue 1/2017
Electronic ISSN: 1754-9493
DOI
https://doi.org/10.1186/s13037-017-0141-1

Other articles of this Issue 1/2017

Patient Safety in Surgery 1/2017 Go to the issue