Skip to main content
Top
Published in: Patient Safety in Surgery 1/2017

Open Access 01-12-2017 | Research

Modified technique of transforaminal lumbar interbody fusion for segmental correction of lumbar kyphosis: a safe alternative to osteotomies?

Authors: Sebastian Weckbach, Heiko Reichel, Michael Kraus, Tugrul Kocak, Friederike Lattig

Published in: Patient Safety in Surgery | Issue 1/2017

Login to get access

Abstract

Background

Sagittal rebalancing of a fixated lumbar hypolordosis (kyphosis) is very important to gain satisfactory results. To correct a misalignment vertebral column resection or pedicle subtraction osteotomies are favored, disregarding the relatively high complication rates. The aim of this study was to evaluate the efficiency and safety of a new modified transforaminal lumbar fusion technique as an alternative.

Methods

We conducted a retrospective review (06/2011-06/2015 ) of a prospective database at an University hospital. Inclusion criteria were adult patients with a fixated lumbar hypolordosis and the need of monosegmental correction of more than 10° with an mTLIF. Exclusion criteria consisted of minor aged patients and polysegmental corrections. Study parameters were the perioperative complications and the achieved postsurgical lordosis. The follow up period was 6 months.

Results

A total of 11 patients could be included. The mean segmental lordosis was -2.3° ± 12.4° (range -22° to 14°) preoperative and 15.5° ± 10.5° (range 0° to 29°) postoperative. The degree of correction was 17° ± 5.7° in mean per treated segment (range 12° to 29°). No neurologic or vascular complications occurred. No substantial loss of correction or implant failure was noted during the 6-month follow-up.

Conclusion

The modified transforaminal lumbar fusion technique is a safe method to correct a fixated lumbar kyphosis. The potential of segmental correction is comparable to pedicle subtraction osteotomies but sparing potentially healthy segments.
Literature
1.
go back to reference Matsumoto T, Okuda S, Maeno T, Yamashita T, Yamasaki R, Sugiura T, Iwasaki M. Spinopelvic sagittal imbalance as a risk factor for adjacent-segment disease after single-segment posterior lumbar interbody fusion. J Neurosurg Spine. 2017;26(4):435–40. Matsumoto T, Okuda S, Maeno T, Yamashita T, Yamasaki R, Sugiura T, Iwasaki M. Spinopelvic sagittal imbalance as a risk factor for adjacent-segment disease after single-segment posterior lumbar interbody fusion. J Neurosurg Spine. 2017;26(4):435–40.
2.
go back to reference Bridwell KH, Baldus C, Berven S, Edwards C 2nd, Glassman S, Hamill C, Horton W, Lenke LG, Ondra S, Schwab F, et al. Changes in radiographic and clinical outcomes with primary treatment adult spinal deformity surgeries from two years to three- to five-years follow-up. Spine (Phila Pa 1976). 2010;35(20):1849–54.CrossRef Bridwell KH, Baldus C, Berven S, Edwards C 2nd, Glassman S, Hamill C, Horton W, Lenke LG, Ondra S, Schwab F, et al. Changes in radiographic and clinical outcomes with primary treatment adult spinal deformity surgeries from two years to three- to five-years follow-up. Spine (Phila Pa 1976). 2010;35(20):1849–54.CrossRef
3.
go back to reference Schwab FJ, Lafage V, Farcy JP, Bridwell KH, Glassman S, Shainline MR. Predicting outcome and complications in the surgical treatment of adult scoliosis. Spine (Phila Pa 1976). 2008;33(20):2243–7.CrossRef Schwab FJ, Lafage V, Farcy JP, Bridwell KH, Glassman S, Shainline MR. Predicting outcome and complications in the surgical treatment of adult scoliosis. Spine (Phila Pa 1976). 2008;33(20):2243–7.CrossRef
4.
go back to reference Berjano P, Aebi M. Pedicle subtraction osteotomies (PSO) in the lumbar spine for sagittal deformities. Eur Spine J. 2015;24(Suppl 1):S49–57.CrossRefPubMed Berjano P, Aebi M. Pedicle subtraction osteotomies (PSO) in the lumbar spine for sagittal deformities. Eur Spine J. 2015;24(Suppl 1):S49–57.CrossRefPubMed
5.
go back to reference Wang MY, Berven SH: Lumbar pedicle subtraction osteotomy. Neurosurgery 2007, 60(2 Suppl 1):ONS140-146; discussion ONS146. Wang MY, Berven SH: Lumbar pedicle subtraction osteotomy. Neurosurgery 2007, 60(2 Suppl 1):ONS140-146; discussion ONS146.
6.
go back to reference Auerbach JD, Lenke LG, Bridwell KH, Sehn JK, Milby AH, Bumpass D, Crawford CH 3rd, O'Shaughnessy BA, Buchowski JM, Chang MS, et al. Major complications and comparison between 3-column osteotomy techniques in 105 consecutive spinal deformity procedures. Spine (Phila Pa 1976). 2012;37(14):1198–210.CrossRef Auerbach JD, Lenke LG, Bridwell KH, Sehn JK, Milby AH, Bumpass D, Crawford CH 3rd, O'Shaughnessy BA, Buchowski JM, Chang MS, et al. Major complications and comparison between 3-column osteotomy techniques in 105 consecutive spinal deformity procedures. Spine (Phila Pa 1976). 2012;37(14):1198–210.CrossRef
7.
go back to reference Lagrone MO, Bradford DS, Moe JH, Lonstein JE, Winter RB, Ogilvie JW. Treatment of symptomatic flatback after spinal fusion. J Bone Joint Surg Am. 1988;70(4):569–80.CrossRefPubMed Lagrone MO, Bradford DS, Moe JH, Lonstein JE, Winter RB, Ogilvie JW. Treatment of symptomatic flatback after spinal fusion. J Bone Joint Surg Am. 1988;70(4):569–80.CrossRefPubMed
8.
go back to reference Chen F, Kang Y, Zhou B, Dai Z. Correction of posttraumatic thoracolumbar kyphosis with modified pedicle subtraction osteotomy. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2016;41(11):1208–14.PubMed Chen F, Kang Y, Zhou B, Dai Z. Correction of posttraumatic thoracolumbar kyphosis with modified pedicle subtraction osteotomy. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2016;41(11):1208–14.PubMed
9.
go back to reference Bridwell KH, Lewis SJ, Edwards C, Lenke LG, Iffrig TM, Berra A, Baldus C, Blanke K. Complications and outcomes of pedicle subtraction osteotomies for fixed sagittal imbalance. Spine (Phila Pa 1976). 2003;28(18):2093–101.CrossRef Bridwell KH, Lewis SJ, Edwards C, Lenke LG, Iffrig TM, Berra A, Baldus C, Blanke K. Complications and outcomes of pedicle subtraction osteotomies for fixed sagittal imbalance. Spine (Phila Pa 1976). 2003;28(18):2093–101.CrossRef
10.
go back to reference Buchowski JM, Bridwell KH, Lenke LG, Kuhns CA, Lehman RA Jr, Kim YJ, Stewart D, Baldus C. Neurologic complications of lumbar pedicle subtraction osteotomy: a 10-year assessment. Spine (Phila Pa 1976). 2007;32(20):2245–52.CrossRef Buchowski JM, Bridwell KH, Lenke LG, Kuhns CA, Lehman RA Jr, Kim YJ, Stewart D, Baldus C. Neurologic complications of lumbar pedicle subtraction osteotomy: a 10-year assessment. Spine (Phila Pa 1976). 2007;32(20):2245–52.CrossRef
11.
go back to reference Yang BP, Ondra SL, Chen LA, Jung HS, Koski TR, Salehi SA. Clinical and radiographic outcomes of thoracic and lumbar pedicle subtraction osteotomy for fixed sagittal imbalance. J Neurosurg Spine. 2006;5(1):9–17.CrossRefPubMed Yang BP, Ondra SL, Chen LA, Jung HS, Koski TR, Salehi SA. Clinical and radiographic outcomes of thoracic and lumbar pedicle subtraction osteotomy for fixed sagittal imbalance. J Neurosurg Spine. 2006;5(1):9–17.CrossRefPubMed
12.
go back to reference Faizan A, Kiapour A, Kiapour AM, Goel VK. Biomechanical analysis of various footprints of transforaminal lumbar interbody fusion devices. J Spinal Disord Tech. 2014;27(4):E118–27.CrossRefPubMed Faizan A, Kiapour A, Kiapour AM, Goel VK. Biomechanical analysis of various footprints of transforaminal lumbar interbody fusion devices. J Spinal Disord Tech. 2014;27(4):E118–27.CrossRefPubMed
13.
go back to reference Tan JS, Bailey CS, Dvorak MF, Fisher CG, Oxland TR. Interbody device shape and size are important to strengthen the vertebra-implant interface. Spine (Phila Pa 1976). 2005;30(6):638–44.CrossRef Tan JS, Bailey CS, Dvorak MF, Fisher CG, Oxland TR. Interbody device shape and size are important to strengthen the vertebra-implant interface. Spine (Phila Pa 1976). 2005;30(6):638–44.CrossRef
14.
go back to reference Tokuhashi Y, Ajiro Y, Umezawa N. Subsidence of metal interbody cage after posterior lumbar interbody fusion with pedicle screw fixation. Orthopedics. 2009;32(4). Tokuhashi Y, Ajiro Y, Umezawa N. Subsidence of metal interbody cage after posterior lumbar interbody fusion with pedicle screw fixation. Orthopedics. 2009;32(4).
15.
go back to reference Tokuhashi Y, Matsuzaki H, Oda H, Uei H. Clinical course and significance of the clear zone around the pedicle screws in the lumbar degenerative disease. Spine (Phila Pa 1976). 2008;33(8):903–8.CrossRef Tokuhashi Y, Matsuzaki H, Oda H, Uei H. Clinical course and significance of the clear zone around the pedicle screws in the lumbar degenerative disease. Spine (Phila Pa 1976). 2008;33(8):903–8.CrossRef
16.
go back to reference Wu JC, Huang WC, Tsai HW, Ko CC, Wu CL, Tu TH, Cheng H. Pedicle screw loosening in dynamic stabilization: incidence, risk, and outcome in 126 patients. Neurosurg Focus. 2011;31(4):E9.CrossRefPubMed Wu JC, Huang WC, Tsai HW, Ko CC, Wu CL, Tu TH, Cheng H. Pedicle screw loosening in dynamic stabilization: incidence, risk, and outcome in 126 patients. Neurosurg Focus. 2011;31(4):E9.CrossRefPubMed
Metadata
Title
Modified technique of transforaminal lumbar interbody fusion for segmental correction of lumbar kyphosis: a safe alternative to osteotomies?
Authors
Sebastian Weckbach
Heiko Reichel
Michael Kraus
Tugrul Kocak
Friederike Lattig
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Patient Safety in Surgery / Issue 1/2017
Electronic ISSN: 1754-9493
DOI
https://doi.org/10.1186/s13037-017-0135-z

Other articles of this Issue 1/2017

Patient Safety in Surgery 1/2017 Go to the issue