Skip to main content
Top
Published in: Patient Safety in Surgery 1/2017

Open Access 01-12-2017 | Short report

Safety and efficacy of resistive polymer versus forced air warming in total joint surgery

Authors: Melanie F. Sandoval, Paul D. Mongan, Michael R. Dayton, Craig A. Hogan

Published in: Patient Safety in Surgery | Issue 1/2017

Login to get access

Abstract

Background

Forced-air warming is used as a mechanism to prevent hypothermia and adverse outcomes associated with hypothermia among patients undergoing surgery. Patient safety in healthcare includes the use of devices and technology that minimize potential adverse events to patients. The present study sought to compare the capabilities of patient warming between two different devices that use different mechanisms of warming: forced-air warming and non-air warming.

Methods

One hundred twenty patients undergoing total hip or total knee arthroplasty received patient warming via a forced warming device or non-air warming fabric conductive material. The project was part of a quality improvement initiative to identify warming devices effective in maintaining normothermic patient core temperatures during orthopedic surgery.

Results

Forced-air warming and non-air warming achieved similar results in maintaining the core temperature of patients undergoing total knee or hip arthroplasty. No adverse events were reported in either group. Operating room staff observed that the non-air warming device was less noisy and appreciated the disposable covers that could be changed after each surgical case.

Conclusions

These findings demonstrate that hypothermia is achieved by both forced-air and non-forced air warming devices among total knee and hip arthroplasty patients. The potential for airflow disruption is present with the forced-air warming device and does not exist with the non-forced air device. The disruption of laminar airflow may be associated with surgical site infections. The disposable covers used to protect the device and patient have potential implications for surgical site infection. Quality improvement efforts aimed to enhance patient safety should include the implementation of healthcare equipment with the least known or suspected risk.
Literature
1.
go back to reference Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature group. N Engl J Med. 1996;334:1209–15.CrossRefPubMed Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature group. N Engl J Med. 1996;334:1209–15.CrossRefPubMed
2.
go back to reference Röder G, Sessler DI, Roth G, Schopper C, Mascha EJ, Plattner O. Intra-operative rewarming with Hot Dog® resistive heating and forced-air heating: a trial of lower-body warming. Anaesth. 2011;66:667–74.CrossRef Röder G, Sessler DI, Roth G, Schopper C, Mascha EJ, Plattner O. Intra-operative rewarming with Hot Dog® resistive heating and forced-air heating: a trial of lower-body warming. Anaesth. 2011;66:667–74.CrossRef
3.
go back to reference Melling AC, Ali B, Scott EM, Leaper DJ. Effects of preoperative warming on the incidence of wound infection after clean surgery: a randomized controlled trial. Lancet. 2001;358:876–80.CrossRefPubMed Melling AC, Ali B, Scott EM, Leaper DJ. Effects of preoperative warming on the incidence of wound infection after clean surgery: a randomized controlled trial. Lancet. 2001;358:876–80.CrossRefPubMed
4.
go back to reference Frank SM, Fleisher LA, Breslow MJ, Higgins MS, Olson KF, Kelly S, et al. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events: a randomized clinical trial. JAMA. 1997;277:1127–34.CrossRefPubMed Frank SM, Fleisher LA, Breslow MJ, Higgins MS, Olson KF, Kelly S, et al. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events: a randomized clinical trial. JAMA. 1997;277:1127–34.CrossRefPubMed
5.
go back to reference Rajagopalan S, Mascha E, Na J, Sessler DI. The effects of mild perioperative hypothermia on blood loss and transfusion requirement: a meta-analysis. Anesth. 2008;108:71–7.CrossRef Rajagopalan S, Mascha E, Na J, Sessler DI. The effects of mild perioperative hypothermia on blood loss and transfusion requirement: a meta-analysis. Anesth. 2008;108:71–7.CrossRef
6.
go back to reference Brandt S, Ruken O, Huttner H, Waglechner G, Chiari A, Greif R, et al. Resistive-polymer versus forced-air warming: comparable efficacy in orthopedic patients. Anesth Analg. 2010;110:834–8.CrossRefPubMed Brandt S, Ruken O, Huttner H, Waglechner G, Chiari A, Greif R, et al. Resistive-polymer versus forced-air warming: comparable efficacy in orthopedic patients. Anesth Analg. 2010;110:834–8.CrossRefPubMed
7.
go back to reference Kurz A, Sessler DI, Narzt E, Bekar A, Lenhardt R, Huemer G, et al. Postoperative hemodynamic and thermoregulatory consequences of intraoperative core hypothermia. J Clin Anesth. 1995;7:359–66.CrossRefPubMed Kurz A, Sessler DI, Narzt E, Bekar A, Lenhardt R, Huemer G, et al. Postoperative hemodynamic and thermoregulatory consequences of intraoperative core hypothermia. J Clin Anesth. 1995;7:359–66.CrossRefPubMed
8.
go back to reference Fleischer LA, Beckman JA, Brown KA, Calkins H, Chaikof EL, Riegal B, et al. ACC/AHA 2006 guideline update on perioperative cardiovascular evaluation for noncardiac surgery: focused update on perioperative beta-blocker therapy. Circulation. 2006;113(22):2662–74.CrossRef Fleischer LA, Beckman JA, Brown KA, Calkins H, Chaikof EL, Riegal B, et al. ACC/AHA 2006 guideline update on perioperative cardiovascular evaluation for noncardiac surgery: focused update on perioperative beta-blocker therapy. Circulation. 2006;113(22):2662–74.CrossRef
9.
go back to reference American Society of Anesthesiologists Task Force on Postanesthetic Care. Practice guidelines for postanesthetic care: a report by the American society of anesthesiologists task force on postanesthetic care. Anesthesiology. 2002;96(3):742–52.CrossRef American Society of Anesthesiologists Task Force on Postanesthetic Care. Practice guidelines for postanesthetic care: a report by the American society of anesthesiologists task force on postanesthetic care. Anesthesiology. 2002;96(3):742–52.CrossRef
11.
go back to reference Avidan MS, Jones N, Ing R, Lundgren C, Morrell DF. Convection warmers—not just hot air. Anaesthesia. 1997;52:1073–6.CrossRefPubMed Avidan MS, Jones N, Ing R, Lundgren C, Morrell DF. Convection warmers—not just hot air. Anaesthesia. 1997;52:1073–6.CrossRefPubMed
12.
go back to reference Kimberger O, Held C, Stadelmann K, Mayer N, Hunkeler C, Sessler DI, et al. Resistive polymer versus forced-air warming: comparable heat transfer and core rewarming rates in volunteers. Anesth Analg. 2008;107(5):1621–6.CrossRefPubMed Kimberger O, Held C, Stadelmann K, Mayer N, Hunkeler C, Sessler DI, et al. Resistive polymer versus forced-air warming: comparable heat transfer and core rewarming rates in volunteers. Anesth Analg. 2008;107(5):1621–6.CrossRefPubMed
13.
go back to reference McGovern PD, Albrecht M, Belani KG, Nachtsheim C, Partington PF, Carluke I, et al. Forced-air warming and ultraclean ventilation do not mix: An investigation of theatre ventilation, patient warming, and joint replacement infection in orthopaedics. J Bone Joint Surg Am. 2011;93(11):1537–44.CrossRef McGovern PD, Albrecht M, Belani KG, Nachtsheim C, Partington PF, Carluke I, et al. Forced-air warming and ultraclean ventilation do not mix: An investigation of theatre ventilation, patient warming, and joint replacement infection in orthopaedics. J Bone Joint Surg Am. 2011;93(11):1537–44.CrossRef
14.
go back to reference Kellam MD, Dieckmann LS, Austin PN. Forced-air warming devices and the risk of surgical site infections. AORN. 2013;98(4):354–69.CrossRef Kellam MD, Dieckmann LS, Austin PN. Forced-air warming devices and the risk of surgical site infections. AORN. 2013;98(4):354–69.CrossRef
Metadata
Title
Safety and efficacy of resistive polymer versus forced air warming in total joint surgery
Authors
Melanie F. Sandoval
Paul D. Mongan
Michael R. Dayton
Craig A. Hogan
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Patient Safety in Surgery / Issue 1/2017
Electronic ISSN: 1754-9493
DOI
https://doi.org/10.1186/s13037-017-0126-0

Other articles of this Issue 1/2017

Patient Safety in Surgery 1/2017 Go to the issue