Skip to main content
Top
Published in: Child and Adolescent Psychiatry and Mental Health 1/2016

Open Access 01-12-2016 | Research article

A preliminary study of movement intensity during a Go/No-Go task and its association with ADHD outcomes and symptom severity

Authors: Fenghua Li, Yi Zheng, Stephanie D. Smith, Frederick Shic, Christina C. Moore, Xixi Zheng, Yanjie Qi, Zhengkui Liu, James F. Leckman

Published in: Child and Adolescent Psychiatry and Mental Health | Issue 1/2016

Login to get access

Abstract

Objective

At present, there are no well-validated biomarkers for attention-deficit/hyperactivity disorder (ADHD). The present study used an infrared motion tracking system to monitor and record the movement intensity of children and to determine its diagnostic precision for ADHD and its possible associations with ratings of ADHD symptom severity.

Methods

A Microsoft motion sensing camera recorded the movement of children during a modified Go/No-Go Task. Movement intensity measures extracted from these data included a composite measure of total movement intensity (TMI measure) and a movement intensity distribution (MID measure) measure across 15 frequency bands (FB measures). In phase 1 of the study, 30 children diagnosed with ADHD or at subthreshold for ADHD and 30 matched healthy controls were compared to determine if measures of movement intensity successfully distinguished children with ADHD from healthy control children. In phase 2, associations between measures of movement intensity and clinician-rated ADHD symptom severity (Clinical Global Impression Scale [CGI] and the ADHD-Rating Scale IV [ADHD-RS]) were examined in a subset of children with ADHD (n = 14) from the phase I sample.

Results

Both measures of movement intensity were able to distinguish children with ADHD from healthy controls. However, only the measures linked to the 15 pre-determined 1 Hz frequency bands were significantly correlated with both the CGI scores and ADHD-RS total scores.

Conclusions

Preliminary findings suggest that measures of movement intensity, particularly measures linked to the 10–11 and 12–13 Hz frequency bands, have the potential to become valid biomarkers for ADHD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry. 2007;164:942–8.CrossRefPubMed Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry. 2007;164:942–8.CrossRefPubMed
2.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: (DSM-5): American Psychiatric Publishing; 2013.CrossRef American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: (DSM-5): American Psychiatric Publishing; 2013.CrossRef
3.
go back to reference Baum SM, Olenchak FR. The alphabet children: GT, ADHD, and more. Exceptionality. 2002;10(2):77–91.CrossRef Baum SM, Olenchak FR. The alphabet children: GT, ADHD, and more. Exceptionality. 2002;10(2):77–91.CrossRef
4.
go back to reference Sciutto M, Eisenberg M. Evaluating the evidence for and overdiagnosis of ADHD. J Atten Disord. 2007;11(2):106–13.CrossRefPubMed Sciutto M, Eisenberg M. Evaluating the evidence for and overdiagnosis of ADHD. J Atten Disord. 2007;11(2):106–13.CrossRefPubMed
5.
go back to reference Faedda G, Teicher M. Objective measures of activity and attention in the differential diagnosis of childhood psychiatric disorders. Essent Psychopharmacol. 2005;6(5):239–49.PubMed Faedda G, Teicher M. Objective measures of activity and attention in the differential diagnosis of childhood psychiatric disorders. Essent Psychopharmacol. 2005;6(5):239–49.PubMed
6.
go back to reference García Murillo L, Cortese S, Anderson D, Di Martino A, Castellanos FX. Locomotor activity measures in the diagnosis of attention deficit hyperactivity disorder: meta-analyses and new findings. J Neurosci Methods. 2015;252:14–26.CrossRefPubMed García Murillo L, Cortese S, Anderson D, Di Martino A, Castellanos FX. Locomotor activity measures in the diagnosis of attention deficit hyperactivity disorder: meta-analyses and new findings. J Neurosci Methods. 2015;252:14–26.CrossRefPubMed
7.
go back to reference Heiser P, Frey J, Smidt J, Sommerlad C, Wehmeier PM, Hebebrand J, Remschmidt H. Objective measurement of hyperactivity, impulsivity, and inattention in children with hyperkinetic disorders before and after treatment with methylphenidate. Eur Child Adolesc Psychiatry. 2004;13(2):100–4.CrossRefPubMed Heiser P, Frey J, Smidt J, Sommerlad C, Wehmeier PM, Hebebrand J, Remschmidt H. Objective measurement of hyperactivity, impulsivity, and inattention in children with hyperkinetic disorders before and after treatment with methylphenidate. Eur Child Adolesc Psychiatry. 2004;13(2):100–4.CrossRefPubMed
8.
go back to reference Heiser P, Heinzel-Gutenbrunner M, Frey J, Smidt J, Grabarkiewicz J, Friedel S, Kuhnau W, Schmidtke J, Remschmidt H, Hebebrand J. Twin study on heritability of activity, attention, and impulsivity as assessed by objective measures. J Atten Disord. 2006;4(9):575–81.CrossRef Heiser P, Heinzel-Gutenbrunner M, Frey J, Smidt J, Grabarkiewicz J, Friedel S, Kuhnau W, Schmidtke J, Remschmidt H, Hebebrand J. Twin study on heritability of activity, attention, and impulsivity as assessed by objective measures. J Atten Disord. 2006;4(9):575–81.CrossRef
9.
go back to reference Teicher M. Actigraphy and motion analysis: new tools for psychiatry. Harv Rev Psychiatry. 1995;3(1):18–35.CrossRefPubMed Teicher M. Actigraphy and motion analysis: new tools for psychiatry. Harv Rev Psychiatry. 1995;3(1):18–35.CrossRefPubMed
10.
go back to reference Teicher M, Anderson C, Polcari A, Gold C, Maas L, Renshaw P. Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Nat Med. 2000;6:470–3.CrossRefPubMed Teicher M, Anderson C, Polcari A, Gold C, Maas L, Renshaw P. Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Nat Med. 2000;6:470–3.CrossRefPubMed
11.
go back to reference Teicher M, Polcari A, Anderson C, Andersen S, Lowen S, Navalta C. Rate dependency revisited: understanding the effects of methylphenidate in children with attention deficit hyperactivity disorder. J Child Adolesc Psychopharmacol. 2003;13(1):41–51.CrossRefPubMed Teicher M, Polcari A, Anderson C, Andersen S, Lowen S, Navalta C. Rate dependency revisited: understanding the effects of methylphenidate in children with attention deficit hyperactivity disorder. J Child Adolesc Psychopharmacol. 2003;13(1):41–51.CrossRefPubMed
12.
go back to reference Teicher MH, Ito Y, Glod CA, Barber NI. Objective measurement of hyperactivity and attentional problems in ADHD. J Am Acad Child Adolesc Psychiatry. 1996;35(3):334–42.CrossRefPubMed Teicher MH, Ito Y, Glod CA, Barber NI. Objective measurement of hyperactivity and attentional problems in ADHD. J Am Acad Child Adolesc Psychiatry. 1996;35(3):334–42.CrossRefPubMed
13.
go back to reference Wehmeier PM, Schacht A, Wolff C, Otto WR, Dittmann RW, Banaschewski T. Neuropsychological outcomes across the day in children with attention-deficit/hyperactivity disorder treated with atomoxetine: results from a placebo-controlled study using a computer-based continuous performance test combined with an infra-red motion-tracking device. J Child Adolesc Psychopharmacol. 2011;5(21):4333–444. Wehmeier PM, Schacht A, Wolff C, Otto WR, Dittmann RW, Banaschewski T. Neuropsychological outcomes across the day in children with attention-deficit/hyperactivity disorder treated with atomoxetine: results from a placebo-controlled study using a computer-based continuous performance test combined with an infra-red motion-tracking device. J Child Adolesc Psychopharmacol. 2011;5(21):4333–444.
14.
go back to reference Kühnhausen J, Dirk J, Schmiedek F. Individual classification of elementary school children’s physical activity: a time-efficient, group-based approach to reference measurements. Behav Res Methods. 2016. (Epub ahead of print). Kühnhausen J, Dirk J, Schmiedek F. Individual classification of elementary school children’s physical activity: a time-efficient, group-based approach to reference measurements. Behav Res Methods. 2016. (Epub ahead of print).
15.
go back to reference Kühnhausen J, Leonhardt A, Dirk J, Schmiedek F. Physical activity and affect in elementary school children’s daily lives. Front Psychol. 2013;22(4):456. Kühnhausen J, Leonhardt A, Dirk J, Schmiedek F. Physical activity and affect in elementary school children’s daily lives. Front Psychol. 2013;22(4):456.
16.
go back to reference Achenbach TM. Manual for the child behavior checklist/4-18 and 1991 profile. Burlington: Department of Psychiatry, University of Vermont; 1991. Achenbach TM. Manual for the child behavior checklist/4-18 and 1991 profile. Burlington: Department of Psychiatry, University of Vermont; 1991.
17.
go back to reference Moore M. Behavioral sleep problems in children and adolescents. J Clin Psychol Med Settings. 2012;19(1):77–83.CrossRefPubMed Moore M. Behavioral sleep problems in children and adolescents. J Clin Psychol Med Settings. 2012;19(1):77–83.CrossRefPubMed
18.
go back to reference Wood AC, Asherson P, Rijsdijk F, et al. Is overactivity a core feature in ADHD? Familial and receiver operating characteristic curve analysis of mechanically assessed activity level[J]. J Am Acad Child Adolesc Psychiatry. 2009;48(10):1023–30.CrossRefPubMed Wood AC, Asherson P, Rijsdijk F, et al. Is overactivity a core feature in ADHD? Familial and receiver operating characteristic curve analysis of mechanically assessed activity level[J]. J Am Acad Child Adolesc Psychiatry. 2009;48(10):1023–30.CrossRefPubMed
19.
go back to reference Martín-Martínez D, Casaseca-de-la-Higuera P, Alberola-López S, Andrés-de-Llano J, López-Villalobos JA, Ardura-Fernández J, Alberola-López C. Nonlinear analysis of actigraphic signals for the assessment of the attention-deficit/hyperactivity disorder (ADHD). Med Eng Phys. 2012;34(9):1317–29.CrossRefPubMed Martín-Martínez D, Casaseca-de-la-Higuera P, Alberola-López S, Andrés-de-Llano J, López-Villalobos JA, Ardura-Fernández J, Alberola-López C. Nonlinear analysis of actigraphic signals for the assessment of the attention-deficit/hyperactivity disorder (ADHD). Med Eng Phys. 2012;34(9):1317–29.CrossRefPubMed
20.
go back to reference Tabori-Kraft J, Sorensen MJ, Kaergaard M, Dalsgaard S, Thomsen PH. Is OPTAx useful for monitoring the effect of stimulants on hyperactivity and inattention? A brief report. Eur Child Adolesc Psychiatry. 2007;16(5):347–51.CrossRefPubMed Tabori-Kraft J, Sorensen MJ, Kaergaard M, Dalsgaard S, Thomsen PH. Is OPTAx useful for monitoring the effect of stimulants on hyperactivity and inattention? A brief report. Eur Child Adolesc Psychiatry. 2007;16(5):347–51.CrossRefPubMed
21.
go back to reference Teicher MH, Polcari A, McGreenery CE. Utility of objective measures of activity and attention in the assessment of therapeutic response to stimulants in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2008;18(3):265–70.CrossRefPubMedPubMedCentral Teicher MH, Polcari A, McGreenery CE. Utility of objective measures of activity and attention in the assessment of therapeutic response to stimulants in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2008;18(3):265–70.CrossRefPubMedPubMedCentral
23.
go back to reference Atkinsons A, Colburn W, De Gruttola V, DeMets D, Downing G, Hoth D. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Biomarker definition working group. Clin Pharmacol Ther. 2001;69:89–95.CrossRef Atkinsons A, Colburn W, De Gruttola V, DeMets D, Downing G, Hoth D. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Biomarker definition working group. Clin Pharmacol Ther. 2001;69:89–95.CrossRef
24.
go back to reference Smith S, Vitulano L, Katsovich, L, Li S, Moore C, Li F, Grantz H, Zheng X, Eicher V, Aktan S, Zheng Y, Sukhodolsky DG, Wexler BE, Leckman JF. A randomized controlled trial of an integrated brain, body, and social (IBBS) intervention for children with attention-deficit/hyperactivity disorder. J Atten Disord. 2016. pii: 1087054716647490. (Epub ahead of print). Smith S, Vitulano L, Katsovich, L, Li S, Moore C, Li F, Grantz H, Zheng X, Eicher V, Aktan S, Zheng Y, Sukhodolsky DG, Wexler BE, Leckman JF. A randomized controlled trial of an integrated brain, body, and social (IBBS) intervention for children with attention-deficit/hyperactivity disorder. J Atten Disord. 2016. pii: 1087054716647490. (Epub ahead of print).
25.
go back to reference Zhang S, Faries DE, Vowles M, Michelson D. ADHD rating scale IV: psychometric properties from a multinational study as clinician-administered instrument. Int J Methods Psychiatr Res. 2005;14(4):186–201.CrossRefPubMed Zhang S, Faries DE, Vowles M, Michelson D. ADHD rating scale IV: psychometric properties from a multinational study as clinician-administered instrument. Int J Methods Psychiatr Res. 2005;14(4):186–201.CrossRefPubMed
26.
go back to reference Adler LA, Spencer T, Faraone SV, Kessler RC, Howes MJ, Biederman J, Secnik K. Validity of pilot adult ADHD self-report scale (ASRS) to rate adult ADHD symptoms. Ann Clin Psychiatry. 2006;18(3):145–8.CrossRefPubMed Adler LA, Spencer T, Faraone SV, Kessler RC, Howes MJ, Biederman J, Secnik K. Validity of pilot adult ADHD self-report scale (ASRS) to rate adult ADHD symptoms. Ann Clin Psychiatry. 2006;18(3):145–8.CrossRefPubMed
27.
go back to reference Kemner JE, Starr HL, Ciccone PE, Hooper-Wood CG, Crockett RS. Outcomes of OROS® methylphenidate compared with atomoxetine in children with ADHD: a multicenter, randomized prospective study. Adv Ther. 2005;22(5):498–512.CrossRefPubMed Kemner JE, Starr HL, Ciccone PE, Hooper-Wood CG, Crockett RS. Outcomes of OROS® methylphenidate compared with atomoxetine in children with ADHD: a multicenter, randomized prospective study. Adv Ther. 2005;22(5):498–512.CrossRefPubMed
28.
go back to reference Guy W. Clinical global impression (CGI). In: ECDEU Assessment manual for psychopharmacology. Rockville: NIMH Psychopharmacology Research Branch; 1976. p. 218–222. Guy W. Clinical global impression (CGI). In: ECDEU Assessment manual for psychopharmacology. Rockville: NIMH Psychopharmacology Research Branch; 1976. p. 218–222.
29.
go back to reference Brocki K, Tillman C, Bohlin G. CPT performance, motor activity, and continuous relations to ADHD symptom domains: a developmental study. Eur J Dev Psychol. 2010;7(2):178–97.CrossRef Brocki K, Tillman C, Bohlin G. CPT performance, motor activity, and continuous relations to ADHD symptom domains: a developmental study. Eur J Dev Psychol. 2010;7(2):178–97.CrossRef
30.
go back to reference Teicher MH, Lowen SB, Polcari A, Foley M, McGreenery CE. Novel strategy for the analysis of CPT data provides new insight into the effects of methylphenidate on attentional states in children with ADHD. J Child Adolesc Psychopharmacol. 2004;14(2):219–32.CrossRefPubMed Teicher MH, Lowen SB, Polcari A, Foley M, McGreenery CE. Novel strategy for the analysis of CPT data provides new insight into the effects of methylphenidate on attentional states in children with ADHD. J Child Adolesc Psychopharmacol. 2004;14(2):219–32.CrossRefPubMed
31.
go back to reference Hervey AS, Epstein JN, Curry JF, Tonev S, Arnold E, Conners K, Hinshaw SP, Swanson JM, Hechtman L. Reaction time distribution analysis of neuropsychological performance in an ADHD sample. Child Neuropsychol. 2006;12(2):125–40.CrossRefPubMed Hervey AS, Epstein JN, Curry JF, Tonev S, Arnold E, Conners K, Hinshaw SP, Swanson JM, Hechtman L. Reaction time distribution analysis of neuropsychological performance in an ADHD sample. Child Neuropsychol. 2006;12(2):125–40.CrossRefPubMed
32.
go back to reference Wehmeier PM, Schacht A, Ulberstad F, Lehmann M, Schneider-Fresenius C, Lehmkuhl G, Dittman RW, Banaschewski T. Does atomoxetine improve executive function, inhibitory control, and hyperactivity?: Results from a placebo-controlled trial using quantitative measurement technology. J Clin Psychopharmacol. 2012;32(5);653–60.CrossRefPubMed Wehmeier PM, Schacht A, Ulberstad F, Lehmann M, Schneider-Fresenius C, Lehmkuhl G, Dittman RW, Banaschewski T. Does atomoxetine improve executive function, inhibitory control, and hyperactivity?: Results from a placebo-controlled trial using quantitative measurement technology. J Clin Psychopharmacol. 2012;32(5);653–60.CrossRefPubMed
35.
go back to reference Gau SS, Chong MY, Yang P, Yen CF, Liang KY, Cheng AT. Psychiatric and psychosocial predictors of substance use disorders among adolescents: longitudinal study. Br J Psychiatry. 2007;190:42–8.CrossRefPubMed Gau SS, Chong MY, Yang P, Yen CF, Liang KY, Cheng AT. Psychiatric and psychosocial predictors of substance use disorders among adolescents: longitudinal study. Br J Psychiatry. 2007;190:42–8.CrossRefPubMed
36.
go back to reference Gau SS, Huang YS, Soong WT, et al. A randomized, double-blind, placebo-controlled clinical trial on once-daily atomoxetine in Taiwanese children and adolescents with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2007;17:447–60.CrossRefPubMed Gau SS, Huang YS, Soong WT, et al. A randomized, double-blind, placebo-controlled clinical trial on once-daily atomoxetine in Taiwanese children and adolescents with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2007;17:447–60.CrossRefPubMed
37.
go back to reference Shuyong C, Bomin Y, Yunpeng G. The compendium of psychological experiment (in Chinese). Beijing: Beijing University Publishing Company; 1989. p. 285–335. Shuyong C, Bomin Y, Yunpeng G. The compendium of psychological experiment (in Chinese). Beijing: Beijing University Publishing Company; 1989. p. 285–335.
38.
go back to reference Nguyen CV, Izadi S, Lovell D. Modeling Kinect sensor noise for improved 3D reconstruction and tracking. In: 2012 second international conference on 3D imaging, modeling, processing, visualization and transmission. New York: IEEE; 2012. p. 524–30. Nguyen CV, Izadi S, Lovell D. Modeling Kinect sensor noise for improved 3D reconstruction and tracking. In: 2012 second international conference on 3D imaging, modeling, processing, visualization and transmission. New York: IEEE; 2012. p. 524–30.
39.
go back to reference Akobeng AK. Understanding diagnositic tests 3: receiver operating characteristic curves. Acta Paediatr. 2007;96(5):644–7.CrossRefPubMed Akobeng AK. Understanding diagnositic tests 3: receiver operating characteristic curves. Acta Paediatr. 2007;96(5):644–7.CrossRefPubMed
40.
go back to reference Kofler MJ, Alderson RM, Raiker JS, Bolden J, Sarver DE, Rapport MD. Working memory and intraindividual variability as neurocognitive indicators in ADHD: examining competing model predictions. Neuropsychology. 2014;28(3):459.CrossRefPubMed Kofler MJ, Alderson RM, Raiker JS, Bolden J, Sarver DE, Rapport MD. Working memory and intraindividual variability as neurocognitive indicators in ADHD: examining competing model predictions. Neuropsychology. 2014;28(3):459.CrossRefPubMed
41.
go back to reference Monden Y, Dan I, Nagashima M, Dan H, Uga M, Ikeda T, Tsuzuki D, Kyutoku Y, Gunji Y, Hirano D, Taniguchi T, Shimoizumi H, Watanabe E, Yamagata T. Individual classification of ADHD children by right prefrontal hemodynamic responses during a go/no-go task as assessed by fNIRS. Neuroimage Clin. 2015;9:1–12.CrossRefPubMedPubMedCentral Monden Y, Dan I, Nagashima M, Dan H, Uga M, Ikeda T, Tsuzuki D, Kyutoku Y, Gunji Y, Hirano D, Taniguchi T, Shimoizumi H, Watanabe E, Yamagata T. Individual classification of ADHD children by right prefrontal hemodynamic responses during a go/no-go task as assessed by fNIRS. Neuroimage Clin. 2015;9:1–12.CrossRefPubMedPubMedCentral
42.
go back to reference Koolwijk I, Stein DS, Chan E, Powell C, Driscoll K, Barbaresi WJ. “Complex” attention-deficit hyperactivity disorder, more norm than exception? Diagnoses and comorbidities in a developmental clinic. Dev Behav Pediatr. 2014;35(9):591–7.CrossRef Koolwijk I, Stein DS, Chan E, Powell C, Driscoll K, Barbaresi WJ. “Complex” attention-deficit hyperactivity disorder, more norm than exception? Diagnoses and comorbidities in a developmental clinic. Dev Behav Pediatr. 2014;35(9):591–7.CrossRef
43.
go back to reference Hirschtritt ME, Lee PC, Pauls DL, Dion Y, Grados MA, Illmann C, King RA, Sandor P, McMahon WM, Lyon GJ, Cath DC, Kurlan R, Robertson MM, Osiecki L, Scharf JM, Mathews CA. Lifetime prevalence, age of risk, and genetic relationships of comorbid psychiatric disorders in tourette syndrome. JAMA Psychiatry. 2015;72(4):325–33.CrossRefPubMedPubMedCentral Hirschtritt ME, Lee PC, Pauls DL, Dion Y, Grados MA, Illmann C, King RA, Sandor P, McMahon WM, Lyon GJ, Cath DC, Kurlan R, Robertson MM, Osiecki L, Scharf JM, Mathews CA. Lifetime prevalence, age of risk, and genetic relationships of comorbid psychiatric disorders in tourette syndrome. JAMA Psychiatry. 2015;72(4):325–33.CrossRefPubMedPubMedCentral
45.
go back to reference Somandepalli K, Kelly C, Reiss PT, Zuo XN, Craddock RC, Yan CG, Petkova E, Castellanos FX, Milham MP, Di Martino A. Short-term test-retest reliability of resting state fMRI metrics in children with and without attention-deficit/hyperactivity disorder. Dev Cogn Neurosci. 2015;15:83–93.CrossRefPubMed Somandepalli K, Kelly C, Reiss PT, Zuo XN, Craddock RC, Yan CG, Petkova E, Castellanos FX, Milham MP, Di Martino A. Short-term test-retest reliability of resting state fMRI metrics in children with and without attention-deficit/hyperactivity disorder. Dev Cogn Neurosci. 2015;15:83–93.CrossRefPubMed
46.
go back to reference Lambek R, Tannock R, Dalsgaard S, et al. Executive dysfunction in school-age children with ADHD[J]. J Atten Disord. 2011;15(8):646–55.CrossRefPubMed Lambek R, Tannock R, Dalsgaard S, et al. Executive dysfunction in school-age children with ADHD[J]. J Atten Disord. 2011;15(8):646–55.CrossRefPubMed
Metadata
Title
A preliminary study of movement intensity during a Go/No-Go task and its association with ADHD outcomes and symptom severity
Authors
Fenghua Li
Yi Zheng
Stephanie D. Smith
Frederick Shic
Christina C. Moore
Xixi Zheng
Yanjie Qi
Zhengkui Liu
James F. Leckman
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Child and Adolescent Psychiatry and Mental Health / Issue 1/2016
Electronic ISSN: 1753-2000
DOI
https://doi.org/10.1186/s13034-016-0135-2

Other articles of this Issue 1/2016

Child and Adolescent Psychiatry and Mental Health 1/2016 Go to the issue