Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2019

Open Access 01-12-2019 | Cardiomyopathy | Research

mTOR pathway in human cardiac hypertrophy caused by LEOPARD syndrome: a different role compared with animal models?

Authors: Hao Cui, Lei Song, Changsheng Zhu, Ce Zhang, Bing Tang, Shengwei Wang, Guixin Wu, Yubao Zou, Xiaohong Huang, Rutai Hui, Shuiyun Wang, Jizheng Wang

Published in: Orphanet Journal of Rare Diseases | Issue 1/2019

Login to get access

Abstract

Background

Animal studies suggested that blocking the activation of the mammalian target of rapamycin (mTOR) pathway might be effective to treat cardiac hypertrophy in LEOPARD syndrome (LS) caused by PTPN11 mutations.

Results

In the present study, mTOR pathway activity was examined in human myocardial samples from two patients with LS, four patients with hypertrophic cardiomyopathy (HCM), and four normal controls. The two patients with LS had p.Y279C and p.T468 M mutations of the PTPN11 gene, respectively. Although PTPN11 mutation showed initially positive regulation on phosphoinositide 3-kinase, overall the mTOR complex 1 pathway showed widely attenuated activity in LS. This included mildly hypophosphorylated mTOR and ribosomal protein S6 kinase and significantly hypophosphorylated Akt308 and ribosomal protein S6, which is similar to HCM. Akt473 is a basal molecule of the mTOR complex 2 pathway. Akt473 was less affected and showed hyperactivity in LS compared with HCM and normal controls. Additionally, MAPK/ERK kinase and ERK1/2 were significantly more phosphorylated in both HCM and LS than normal controls.

Conclusions

In LS, the mTOR signaling pathway shows similar activity to HCM and is attenuated compared with normal controls. Thus, caution should be applied when using rapamycin to treat heart hypertrophy in LS.
Literature
1.
go back to reference Sarkozy A, Digilio MC, Dallapiccola B. Leopard syndrome. Orphanet J Rare Dis. 2008;3:13.CrossRef Sarkozy A, Digilio MC, Dallapiccola B. Leopard syndrome. Orphanet J Rare Dis. 2008;3:13.CrossRef
2.
go back to reference Gelb BD, Tartaglia M. Noonan Syndrome with Multiple Lentigines. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews®. Seattle: University of Washington, Seattle; 2007. Gelb BD, Tartaglia M. Noonan Syndrome with Multiple Lentigines. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews®. Seattle: University of Washington, Seattle; 2007.
3.
go back to reference Chen H, Li X, Liu X, et al. Clinical and mutation profile of pediatric patients with RASopathy-associated hypertrophic cardiomyopathy: results from a Chinese cohort. Orphanet J Rare Dis. 2019;14:29.CrossRef Chen H, Li X, Liu X, et al. Clinical and mutation profile of pediatric patients with RASopathy-associated hypertrophic cardiomyopathy: results from a Chinese cohort. Orphanet J Rare Dis. 2019;14:29.CrossRef
4.
go back to reference Calcagni G, Digilio MC, Marino B, Tartaglia M. Pediatric patients with RASopathy-associated hypertrophic cardiomyopathy: the multifaceted consequences of PTPN11 mutations. Orphanet J Rare Dis. 2019;14:163.CrossRef Calcagni G, Digilio MC, Marino B, Tartaglia M. Pediatric patients with RASopathy-associated hypertrophic cardiomyopathy: the multifaceted consequences of PTPN11 mutations. Orphanet J Rare Dis. 2019;14:163.CrossRef
5.
go back to reference Marin TM, Keith K, Davies B, et al. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest. 2011;121:1026–43.CrossRef Marin TM, Keith K, Davies B, et al. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest. 2011;121:1026–43.CrossRef
6.
go back to reference Schramm C, Fine DM, Edwards MA, Reeb AN, Krenz M. The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling. Am J Physiol Heart Circ Physiol. 2012;302:H231–43.CrossRef Schramm C, Fine DM, Edwards MA, Reeb AN, Krenz M. The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling. Am J Physiol Heart Circ Physiol. 2012;302:H231–43.CrossRef
7.
go back to reference Schramm C, Edwards MA, Krenz M. New approaches to prevent LEOPARD syndrome-associated cardiac hypertrophy by specifically targeting Shp2-dependent signaling. J Biol Chem. 2013;288:18335–44.CrossRef Schramm C, Edwards MA, Krenz M. New approaches to prevent LEOPARD syndrome-associated cardiac hypertrophy by specifically targeting Shp2-dependent signaling. J Biol Chem. 2013;288:18335–44.CrossRef
8.
go back to reference Hahn A, Lauriol J, Thul J, et al. Rapidly progressive hypertrophic cardiomyopathy in an infant with Noonan syndrome with multiple lentigines: palliative treatment with a rapamycin analog. Am J Med Genet A. 2015;167A:744–51.CrossRef Hahn A, Lauriol J, Thul J, et al. Rapidly progressive hypertrophic cardiomyopathy in an infant with Noonan syndrome with multiple lentigines: palliative treatment with a rapamycin analog. Am J Med Genet A. 2015;167A:744–51.CrossRef
9.
go back to reference Tajan M, de Rocca SA, Valet P, Edouard T, Yart A. SHP2 sails from physiology to pathology. Eur J Med Genet. 2015;58:509–25.CrossRef Tajan M, de Rocca SA, Valet P, Edouard T, Yart A. SHP2 sails from physiology to pathology. Eur J Med Genet. 2015;58:509–25.CrossRef
10.
go back to reference Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG. PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J Biol Chem. 2006;281:6785–92.CrossRef Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG. PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J Biol Chem. 2006;281:6785–92.CrossRef
11.
go back to reference Lauriol J, Jaffré F, Kontaridis MI. The role of the protein tyrosine phosphatase SHP2 in cardiac development and disease. Semin Cell Dev Biol. 2015;37:73–81.CrossRef Lauriol J, Jaffré F, Kontaridis MI. The role of the protein tyrosine phosphatase SHP2 in cardiac development and disease. Semin Cell Dev Biol. 2015;37:73–81.CrossRef
12.
go back to reference Aoki Y, Niihori T, Inoue S-I, Matsubara Y. Recent advances in RASopathies. J Hum Genet. 2016;61:33–9.CrossRef Aoki Y, Niihori T, Inoue S-I, Matsubara Y. Recent advances in RASopathies. J Hum Genet. 2016;61:33–9.CrossRef
13.
go back to reference Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15:155–62.CrossRef Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15:155–62.CrossRef
14.
go back to reference Paoletti E. mTOR Inhibition and Cardiovascular Diseases: Cardiac Hypertrophy. Transplantation. 2018;102:S41–3.CrossRef Paoletti E. mTOR Inhibition and Cardiovascular Diseases: Cardiac Hypertrophy. Transplantation. 2018;102:S41–3.CrossRef
15.
go back to reference Shende P, Plaisance I, Morandi C, et al. Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice. Circulation. 2011;123:1073–82.CrossRef Shende P, Plaisance I, Morandi C, et al. Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice. Circulation. 2011;123:1073–82.CrossRef
16.
go back to reference Allanson JE, Roberts AE. Noonan Syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al. GeneReviews(R). Seattle: University of Washington, Seattle University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved., 1993. Allanson JE, Roberts AE. Noonan Syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al. GeneReviews(R). Seattle: University of Washington, Seattle University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved., 1993.
17.
go back to reference Pandit B, Sarkozy A, Pennacchio LA, et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet. 2007;39:1007–12.CrossRef Pandit B, Sarkozy A, Pennacchio LA, et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet. 2007;39:1007–12.CrossRef
18.
go back to reference Gelb BD, Tartaglia M. Noonan Syndrome with Multiple Lentigines. In: Pagon RA, Adam MP, Ardinger HH, et al. GeneReviews(R). Seattle: University of Washington, Seattle University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved., 1993. Gelb BD, Tartaglia M. Noonan Syndrome with Multiple Lentigines. In: Pagon RA, Adam MP, Ardinger HH, et al. GeneReviews(R). Seattle: University of Washington, Seattle University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved., 1993.
19.
go back to reference Mercuro G, Bassareo PP, Deidda M, Cadeddu C, Barberini L, Atzori L. Metabolomics: a new era in cardiology? J Cardiovasc Med. 2011;12:800–5.CrossRef Mercuro G, Bassareo PP, Deidda M, Cadeddu C, Barberini L, Atzori L. Metabolomics: a new era in cardiology? J Cardiovasc Med. 2011;12:800–5.CrossRef
20.
go back to reference Wang J, Wang Y, Zou Y, et al. Malignant effects of multiple rare variants in sarcomere genes on the prognosis of patients with hypertrophic cardiomyopathy. Eur J Heart Fail. 2014;16:950–7.CrossRef Wang J, Wang Y, Zou Y, et al. Malignant effects of multiple rare variants in sarcomere genes on the prognosis of patients with hypertrophic cardiomyopathy. Eur J Heart Fail. 2014;16:950–7.CrossRef
21.
go back to reference Lauriol J, Kontaridis MI. PTPN11-associated mutations in the heart: has LEOPARD changed Its RASpots? Trends Cardiovasc Med. 2011;21:97–104.CrossRef Lauriol J, Kontaridis MI. PTPN11-associated mutations in the heart: has LEOPARD changed Its RASpots? Trends Cardiovasc Med. 2011;21:97–104.CrossRef
Metadata
Title
mTOR pathway in human cardiac hypertrophy caused by LEOPARD syndrome: a different role compared with animal models?
Authors
Hao Cui
Lei Song
Changsheng Zhu
Ce Zhang
Bing Tang
Shengwei Wang
Guixin Wu
Yubao Zou
Xiaohong Huang
Rutai Hui
Shuiyun Wang
Jizheng Wang
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Cardiomyopathy
Published in
Orphanet Journal of Rare Diseases / Issue 1/2019
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-019-1204-4

Other articles of this Issue 1/2019

Orphanet Journal of Rare Diseases 1/2019 Go to the issue