Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2019

Open Access 01-12-2019 | Pleural Effusion | Research

Detection of NRAS mutation in cell-free DNA biological fluids from patients with kaposiform lymphangiomatosis

Authors: Michio Ozeki, Yoko Aoki, Akifumi Nozawa, Shiho Yasue, Saori Endo, Yumiko Hori, Kentaro Matsuoka, Tetsuya Niihori, Ryo Funayama, Matsuyuki Shirota, Keiko Nakayama, Toshiyuki Fukao

Published in: Orphanet Journal of Rare Diseases | Issue 1/2019

Login to get access

Abstract

Background

Kaposiform lymphangiomatosis (KLA) has recently been distinguished as a novel subtype of generalized lymphatic anomaly (GLA) with foci of spindle endothelial cells. All cases of KLA involve multiple organs and have an unfavorable prognosis. However, the molecular pathogenesis is unknown, and there are no useful biomarkers. In the present study, we performed genetic analysis to elucidate the cause of this disease and detect biomarkers for it.

Methods

We performed whole-exome sequencing of DNA samples from leukocytes and a biopsy specimen and analyzed cell-free DNA (cfDNA) from plasma and pleural effusion of patients to identify the NRAS c.182A > G (p.Q61R) mutation using the droplet digital polymerase chain reaction (ddPCR).

Results

All KLA patients (patients 1–5) had invasive and aggressive features (hemorrhagic pleural effusions, coagulation disorder, and thrombocytopenia) and characteristic findings of KLA in their pathological examinations. In whole exome sequencing for patient 1, c.182A > G missense variant (p.Q61R) in NRAS was identified in fresh frozen samples of a mass on the left chest wall at a frequency of 5% of total alleles but not in his blood leukocytes. Furthermore, the same mutation was detected in cfDNA isolated from plasma and pleural effusion by using ddPCR. ddPCR analysis of plasma/pleural effusion samples from an additional four KLA patients showed that the same mutation was detected in isolated cfDNA in three of the four, as well as in a tissue sample from one of the three plasma/effusion-positive patients that had been obtained to confirm the mutation.

Conclusion

These results provide the first evidence that NRAS oncogenic variant was identified in DNA samples from KLA patients from not only two affected lesions but also plasma and pleural effusion.
Literature
1.
go back to reference Ozeki M, Fujino A, Matsuoka K, Nosaka S, Kuroda T, Fukao T. Clinical features and prognosis of generalized lymphatic anomaly, Kaposiform Lymphangiomatosis, and Gorham-stout disease. Pediatr Blood Cancer. 2016;63:832–8.CrossRef Ozeki M, Fujino A, Matsuoka K, Nosaka S, Kuroda T, Fukao T. Clinical features and prognosis of generalized lymphatic anomaly, Kaposiform Lymphangiomatosis, and Gorham-stout disease. Pediatr Blood Cancer. 2016;63:832–8.CrossRef
3.
go back to reference Croteau SE, Kozakewich HP, Perez-Atayde AR, Fishman SJ, Alomari AI, Chaudry G, Mulliken JB, Trenor CC 3rd. Kaposiform lymphangiomatosis: a distinct aggressive lymphatic anomaly. J Pediatr. 2014;164:383–8.CrossRef Croteau SE, Kozakewich HP, Perez-Atayde AR, Fishman SJ, Alomari AI, Chaudry G, Mulliken JB, Trenor CC 3rd. Kaposiform lymphangiomatosis: a distinct aggressive lymphatic anomaly. J Pediatr. 2014;164:383–8.CrossRef
4.
go back to reference Greene AK, Goss JA. Vascular anomalies: from a Clinicohistologic to a genetic framework. Plast Reconstr Surg. 2018;141:709e–17e.CrossRef Greene AK, Goss JA. Vascular anomalies: from a Clinicohistologic to a genetic framework. Plast Reconstr Surg. 2018;141:709e–17e.CrossRef
5.
go back to reference Barclay SF, Inman KW, Luks VL, McIntyre JB, Al-Ibraheemi A, Church AJ, Perez-Atayde AR, Mangray S, Jeng M, Kreimer SR, Walker L, Fishman SJ, Alomari AI, Chaudry G, Trenor CC III, Adams D, Kozakewich HPW, Kurek KC. A somatic activating NRAS variant associated with kaposiform lymphangiomatosis. Genet Med. 2019;21:1517–24.CrossRef Barclay SF, Inman KW, Luks VL, McIntyre JB, Al-Ibraheemi A, Church AJ, Perez-Atayde AR, Mangray S, Jeng M, Kreimer SR, Walker L, Fishman SJ, Alomari AI, Chaudry G, Trenor CC III, Adams D, Kozakewich HPW, Kurek KC. A somatic activating NRAS variant associated with kaposiform lymphangiomatosis. Genet Med. 2019;21:1517–24.CrossRef
6.
go back to reference Manevitz-Mendelson E, Leichner GS, Barel O, Davidi-Avrahami I, Ziv-Strasser L, Eyal E, Pessach I, Rimon U, Barzilai A, Hirshberg A, Chechekes K, Amariglio N, Rechavi G, Yaniv K, Greenberger S. Somatic NRAS mutation in patient with generalized lymphatic anomaly. Angiogenesis. 2018;21:287–98.CrossRef Manevitz-Mendelson E, Leichner GS, Barel O, Davidi-Avrahami I, Ziv-Strasser L, Eyal E, Pessach I, Rimon U, Barzilai A, Hirshberg A, Chechekes K, Amariglio N, Rechavi G, Yaniv K, Greenberger S. Somatic NRAS mutation in patient with generalized lymphatic anomaly. Angiogenesis. 2018;21:287–98.CrossRef
7.
go back to reference Corcoran RB, Chabner BA. Application of cell-free DNA analysis to Cancer treatment. N Engl J Med. 2018;379:1754–65.CrossRef Corcoran RB, Chabner BA. Application of cell-free DNA analysis to Cancer treatment. N Engl J Med. 2018;379:1754–65.CrossRef
8.
go back to reference McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.CrossRef McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.CrossRef
9.
go back to reference Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.CrossRef Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.CrossRef
10.
go back to reference Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F. WHO classification of tumours of soft tissue and bone, vol. 5. 4th ed. Geneva: WHO; 2013. p. 137. Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F. WHO classification of tumours of soft tissue and bone, vol. 5. 4th ed. Geneva: WHO; 2013. p. 137.
11.
go back to reference Le Cras TD, Mobberley-Schuman PS, Broering M, Fei L, Trenor CC 3rd, Adams DM. Angiopoietins as serum biomarkers for lymphatic anomalies. Angiogenesis. 2017;20:163–73.CrossRef Le Cras TD, Mobberley-Schuman PS, Broering M, Fei L, Trenor CC 3rd, Adams DM. Angiopoietins as serum biomarkers for lymphatic anomalies. Angiogenesis. 2017;20:163–73.CrossRef
12.
go back to reference Ozeki M, Nozawa A, Kawamoto N, Fujino A, Hirakawa S, Fukao T. Potential biomarkers of kaposiform lymphangiomatosis. Pediatr Blood Cancer. 2019;66:e27878.CrossRef Ozeki M, Nozawa A, Kawamoto N, Fujino A, Hirakawa S, Fukao T. Potential biomarkers of kaposiform lymphangiomatosis. Pediatr Blood Cancer. 2019;66:e27878.CrossRef
13.
go back to reference Bourdeaut F, Herault A, Gentien D, Pierron G, Ballet S, Reynaud S, Paris R, Schleiermacher G, Baumann C, Philippe-Chomette P, Gauthier-Villars M, Peuchmaur M, Radvanyi F, Delattre O. Mosaicism for oncogenic G12D KRAS mutation associated with epidermal nevus, polycystic kidneys and rhabdomyosarcoma. J Med Genet. 2010;47:859–62.CrossRef Bourdeaut F, Herault A, Gentien D, Pierron G, Ballet S, Reynaud S, Paris R, Schleiermacher G, Baumann C, Philippe-Chomette P, Gauthier-Villars M, Peuchmaur M, Radvanyi F, Delattre O. Mosaicism for oncogenic G12D KRAS mutation associated with epidermal nevus, polycystic kidneys and rhabdomyosarcoma. J Med Genet. 2010;47:859–62.CrossRef
14.
go back to reference Aoki Y, Niihori T, Narumi Y, Kure S, Matsubara Y. The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum Mutat. 2008;29:992–1006.CrossRef Aoki Y, Niihori T, Narumi Y, Kure S, Matsubara Y. The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum Mutat. 2008;29:992–1006.CrossRef
16.
go back to reference Aoki Y, Niihori T, Inoue S, Matsubara Y. Recent advances in RASopathies. J Hum Genet. 2016;61:33–9.CrossRef Aoki Y, Niihori T, Inoue S, Matsubara Y. Recent advances in RASopathies. J Hum Genet. 2016;61:33–9.CrossRef
17.
go back to reference Groesser L, Peterhof E, Evert M, Landthaler M, Berneburg M, Hafner C. BRAF and RAS mutations in sporadic and secondary pyogenic granuloma. J Invest Dermatol. 2016;136:481–6.CrossRef Groesser L, Peterhof E, Evert M, Landthaler M, Berneburg M, Hafner C. BRAF and RAS mutations in sporadic and secondary pyogenic granuloma. J Invest Dermatol. 2016;136:481–6.CrossRef
18.
go back to reference Mourah S, How-Kit A, Meignin V, Gossot D, Lorillon G, Bugnet E, Mauger F, Lebbe C, Chevret S, Tost J, Tazi A. Recurrent NRAS mutations in pulmonary Langerhans cell histiocytosis. Eur Respir J. 2016;47:1785–96.CrossRef Mourah S, How-Kit A, Meignin V, Gossot D, Lorillon G, Bugnet E, Mauger F, Lebbe C, Chevret S, Tost J, Tazi A. Recurrent NRAS mutations in pulmonary Langerhans cell histiocytosis. Eur Respir J. 2016;47:1785–96.CrossRef
19.
go back to reference Kuroda Y, Ohashi I, Enomoto Y, Naruto T, Baba N, Tanaka Y, Aida N, Okamoto N, Niihori T, Aoki Y, Kurosawa K. A postzygotic NRAS mutation in a patient with Schimmelpenning syndrome. Am J Med Genet A. 2015;167:2223–5.CrossRef Kuroda Y, Ohashi I, Enomoto Y, Naruto T, Baba N, Tanaka Y, Aida N, Okamoto N, Niihori T, Aoki Y, Kurosawa K. A postzygotic NRAS mutation in a patient with Schimmelpenning syndrome. Am J Med Genet A. 2015;167:2223–5.CrossRef
20.
go back to reference Kinsler VA, Thomas AC, Ishida M, Bulstrode NW, Loughlin S, Hing S, Chalker J, McKenzie K, Abu-Amero S, Slater O, Chanudet E, Palmer R, Morrogh D, Stanier P, Healy E, Sebire NJ, Moore GE. Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61 of NRAS. J Investig Dermatol. 2013;133:2229–36.CrossRef Kinsler VA, Thomas AC, Ishida M, Bulstrode NW, Loughlin S, Hing S, Chalker J, McKenzie K, Abu-Amero S, Slater O, Chanudet E, Palmer R, Morrogh D, Stanier P, Healy E, Sebire NJ, Moore GE. Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61 of NRAS. J Investig Dermatol. 2013;133:2229–36.CrossRef
21.
go back to reference Lim YH, Ovejero D, Derrick KM, Collins MT, Choate KA. Cutaneous skeletal hypophosphatemia syndrome (CSHS) is a multilineage somatic mosaic RASopathy. J Am Acad Dermatol. 2016;75:420–7.CrossRef Lim YH, Ovejero D, Derrick KM, Collins MT, Choate KA. Cutaneous skeletal hypophosphatemia syndrome (CSHS) is a multilineage somatic mosaic RASopathy. J Am Acad Dermatol. 2016;75:420–7.CrossRef
Metadata
Title
Detection of NRAS mutation in cell-free DNA biological fluids from patients with kaposiform lymphangiomatosis
Authors
Michio Ozeki
Yoko Aoki
Akifumi Nozawa
Shiho Yasue
Saori Endo
Yumiko Hori
Kentaro Matsuoka
Tetsuya Niihori
Ryo Funayama
Matsuyuki Shirota
Keiko Nakayama
Toshiyuki Fukao
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2019
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-019-1191-5

Other articles of this Issue 1/2019

Orphanet Journal of Rare Diseases 1/2019 Go to the issue