Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2019

Open Access 01-12-2019 | Research

DeepNEU: cellular reprogramming comes of age – a machine learning platform with application to rare diseases research

Author: Wayne R. Danter

Published in: Orphanet Journal of Rare Diseases | Issue 1/2019

Login to get access

Abstract

Background

Conversion of human somatic cells into induced pluripotent stem cells (iPSCs) is often an inefficient, time consuming and expensive process. Also, the tendency of iPSCs to revert to their original somatic cell type over time continues to be problematic. A computational model of iPSCs identifying genes/molecules necessary for iPSC generation and maintenance could represent a crucial step forward for improved stem cell research. The combination of substantial genetic relationship data, advanced computing hardware and powerful nonlinear modeling software could make the possibility of artificially-induced pluripotent stem cells (aiPSC) a reality. We have developed an unsupervised deep machine learning technology, called DeepNEU that is based on a fully-connected recurrent neural network architecture with one network processing layer for each input. DeepNEU was used to simulate aiPSC systems using a defined set of reprogramming transcription factors. Genes/proteins that were reported to be essential in human pluripotent stem cells (hPSC) were used for system modelling.

Results

The Mean Squared Error (MSE) function was used to assess system learning. System convergence was defined at MSE < 0.001. The markers of human iPSC pluripotency (N = 15) were all upregulated in the aiPSC final model. These upregulated/expressed genes in the aiPSC system were entirely consistent with results obtained for iPSCs.

Conclusion

This research introduces and validates the potential use of aiPSCs as computer models of human pluripotent stem cell systems. Disease-specific aiPSCs have the potential to improve disease modeling, prototyping of wet lab experiments, and prediction of genes relevant and necessary for aiPSC production and maintenance for both common and rare diseases in a cost-effective manner.
Literature
1.
go back to reference Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci. 1952;38:455–63.CrossRef Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci. 1952;38:455–63.CrossRef
2.
go back to reference Gurdon J, Laskey R. The transplantation of nuclei from single cultured cells into enucleate frogs’ eggs. Development. 1970;24:227–48. Gurdon J, Laskey R. The transplantation of nuclei from single cultured cells into enucleate frogs’ eggs. Development. 1970;24:227–48.
3.
go back to reference Wilmut I, Schnieke AE, McWhir J, amp Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810.CrossRef Wilmut I, Schnieke AE, McWhir J, amp Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810.CrossRef
4.
go back to reference Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell. 2006;126:663–76.CrossRef Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell. 2006;126:663–76.CrossRef
5.
go back to reference Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007a;2:3081.CrossRef Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007a;2:3081.CrossRef
6.
go back to reference Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell. 2007b;131:861–72.CrossRef Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell. 2007b;131:861–72.CrossRef
7.
go back to reference Hackam DG, Redelmeier DA. Translation of research evidence from animals to humans. Jama. 2006;296:1727–32.CrossRef Hackam DG, Redelmeier DA. Translation of research evidence from animals to humans. Jama. 2006;296:1727–32.CrossRef
8.
go back to reference Kobayashi Y, Fukami T, Nakajima A, Watanabe A, Nakajima M, Yokoi T. Species differences in tissue distribution and enzyme activities of arylacetamide deacetylase in human, rat, and mouse. Drug Metab Dispos. 2012;40:671–9.CrossRef Kobayashi Y, Fukami T, Nakajima A, Watanabe A, Nakajima M, Yokoi T. Species differences in tissue distribution and enzyme activities of arylacetamide deacetylase in human, rat, and mouse. Drug Metab Dispos. 2012;40:671–9.CrossRef
9.
go back to reference Siller R, Greenhough S, Park I-H, J Sullivan G. Modelling human disease with pluripotent stem cells. Current gene therapy. 2013;13:99–110.CrossRef Siller R, Greenhough S, Park I-H, J Sullivan G. Modelling human disease with pluripotent stem cells. Current gene therapy. 2013;13:99–110.CrossRef
10.
go back to reference Van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, Macleod MR. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7:e1000245.CrossRef Van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, Macleod MR. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7:e1000245.CrossRef
11.
go back to reference Batista LF, Pech MF, Zhong FL, Nguyen HN, Xie KT, Zaug AJ, Crary SM, Choi J, Sebastiano V, Cherry A. Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature. 2011;474:399.CrossRef Batista LF, Pech MF, Zhong FL, Nguyen HN, Xie KT, Zaug AJ, Crary SM, Choi J, Sebastiano V, Cherry A. Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature. 2011;474:399.CrossRef
12.
go back to reference Chamberlain SJ, Chen P-F, Ng KY, Bourgois-Rocha F, Lemtiri-Chlieh F, Levine ES, Lalande M. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader–Willi syndromes. Proc Natl Acad Sci. 2010;107:17668–73.CrossRef Chamberlain SJ, Chen P-F, Ng KY, Bourgois-Rocha F, Lemtiri-Chlieh F, Levine ES, Lalande M. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader–Willi syndromes. Proc Natl Acad Sci. 2010;107:17668–73.CrossRef
13.
go back to reference Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012;482:216.CrossRef Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012;482:216.CrossRef
14.
go back to reference Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E, Alexander G, Huang-Doran I, Griffin J, Ahrlund-Richter L, Skepper J. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest. 2010;120:3127–36.CrossRef Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E, Alexander G, Huang-Doran I, Griffin J, Ahrlund-Richter L, Skepper J. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest. 2010;120:3127–36.CrossRef
15.
go back to reference Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, Dolmetsch RE. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature. 2011;471:230.CrossRef Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, Dolmetsch RE. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature. 2011;471:230.CrossRef
16.
go back to reference Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med. 2009;15:59–68.CrossRef Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med. 2009;15:59–68.CrossRef
17.
go back to reference Kinnear C, Chang WY, Khattak S, Hinek A, Thompson T, de Carvalho Rodrigues D, Kennedy K, Mahmut N, Pasceri P, Stanford WL. Modeling and rescue of the vascular phenotype of Williams-Beuren syndrome in patient induced pluripotent stem cells. Stem Cells Transl Med. 2013;2:2–15.CrossRef Kinnear C, Chang WY, Khattak S, Hinek A, Thompson T, de Carvalho Rodrigues D, Kennedy K, Mahmut N, Pasceri P, Stanford WL. Modeling and rescue of the vascular phenotype of Williams-Beuren syndrome in patient induced pluripotent stem cells. Stem Cells Transl Med. 2013;2:2–15.CrossRef
18.
go back to reference Papapetrou EP, Tomishima MJ, Chambers SM, Mica Y, Reed E, Menon J, Tabar V, Mo Q, Studer L, Sadelain M. Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proc Natl Acad Sci. 2009;106:12759–64.CrossRef Papapetrou EP, Tomishima MJ, Chambers SM, Mica Y, Reed E, Menon J, Tabar V, Mo Q, Studer L, Sadelain M. Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proc Natl Acad Sci. 2009;106:12759–64.CrossRef
19.
go back to reference Beers J, Linask KL, Chen JA, Siniscalchi LI, Lin Y, Zheng W, Rao M, Chen G. A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture. Sci Rep. 2015;5:11319.CrossRef Beers J, Linask KL, Chen JA, Siniscalchi LI, Lin Y, Zheng W, Rao M, Chen G. A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture. Sci Rep. 2015;5:11319.CrossRef
20.
go back to reference Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee M, Ji H, Ehrlich L. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467:285.CrossRef Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee M, Ji H, Ehrlich L. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467:285.CrossRef
21.
go back to reference Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell. 2013;13:149–59.CrossRef Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell. 2013;13:149–59.CrossRef
22.
go back to reference Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell. 2010;6:71–9.CrossRef Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell. 2010;6:71–9.CrossRef
23.
go back to reference Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’malley R, Castanon R, Klugman S. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471:68.CrossRef Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’malley R, Castanon R, Klugman S. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471:68.CrossRef
24.
go back to reference Shi Y, Desponts C, Do JT, Hahm HS, Schöler HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell. 2008;3:568–74.CrossRef Shi Y, Desponts C, Do JT, Hahm HS, Schöler HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell. 2008;3:568–74.CrossRef
25.
go back to reference Chen Y, Yang Z, Zhao Z-A, Shen Z. Direct reprogramming of fibroblasts into cardiomyocytes. Stem Cell Res Ther. 2017;8:118.CrossRef Chen Y, Yang Z, Zhao Z-A, Shen Z. Direct reprogramming of fibroblasts into cardiomyocytes. Stem Cell Res Ther. 2017;8:118.CrossRef
26.
go back to reference Ehrhart F, Coort SL, Cirillo E, Smeets E, Evelo CT, Curfs LM. Rett syndrome–biological pathways leading from MECP2 to disorder phenotypes. Orphanet journal of rare diseases. 2016;11:158.CrossRef Ehrhart F, Coort SL, Cirillo E, Smeets E, Evelo CT, Curfs LM. Rett syndrome–biological pathways leading from MECP2 to disorder phenotypes. Orphanet journal of rare diseases. 2016;11:158.CrossRef
27.
go back to reference Yu K-R, Shin J-H, Kim J-J, Koog MG, Lee JY, Choi SW, Kim H-S, Seo Y, Lee S, Shin T-h. Rapid and efficient direct conversion of human adult somatic cells into neural stem cells by HMGA2/let-7b. Cell Rep. 2015;10:441–52.CrossRef Yu K-R, Shin J-H, Kim J-J, Koog MG, Lee JY, Choi SW, Kim H-S, Seo Y, Lee S, Shin T-h. Rapid and efficient direct conversion of human adult somatic cells into neural stem cells by HMGA2/let-7b. Cell Rep. 2015;10:441–52.CrossRef
28.
go back to reference Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature genetics. 1999;23:185.CrossRef Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature genetics. 1999;23:185.CrossRef
29.
go back to reference Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan S. Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat Biotechnol. 2007;25:803.CrossRef Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan S. Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat Biotechnol. 2007;25:803.CrossRef
30.
go back to reference Ojala M, Rajala K, Pekkanen-Mattila M, Miettinen M, Huhtala H, Aalto-Setälä K. Culture conditions affect cardiac differentiation potential of human pluripotent stem cells. PLoS One. 2012;7:e48659.CrossRef Ojala M, Rajala K, Pekkanen-Mattila M, Miettinen M, Huhtala H, Aalto-Setälä K. Culture conditions affect cardiac differentiation potential of human pluripotent stem cells. PLoS One. 2012;7:e48659.CrossRef
31.
go back to reference Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature. 2012;481:295.CrossRef Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature. 2012;481:295.CrossRef
32.
go back to reference Pe'er D. Bayesian network analysis of signaling networks: a primer. In: Sci STKE 2005; 2005. p. pl4. Pe'er D. Bayesian network analysis of signaling networks: a primer. In: Sci STKE 2005; 2005. p. pl4.
33.
go back to reference Bornholdt S. Boolean network models of cellular regulation: prospects and limitations. J R Soc Interface. 2008;5:S85–94.CrossRef Bornholdt S. Boolean network models of cellular regulation: prospects and limitations. J R Soc Interface. 2008;5:S85–94.CrossRef
34.
go back to reference Nakaoka S. Multiscale mathematical modeling and simulation of cellular dynamical process. In: Epidermal Cells (Springer); 2014. p. 269–83. Nakaoka S. Multiscale mathematical modeling and simulation of cellular dynamical process. In: Epidermal Cells (Springer); 2014. p. 269–83.
35.
go back to reference Frades I, Matthiesen R. Overview on techniques in cluster analysis. In: Bioinformatics Methods In Clinical Research; 2010. p. 81–107.CrossRef Frades I, Matthiesen R. Overview on techniques in cluster analysis. In: Bioinformatics Methods In Clinical Research; 2010. p. 81–107.CrossRef
36.
go back to reference Grys BT, Lo DS, Sahin N, Kraus OZ, Morris Q, Boone C, Andrews BJ. Machine learning and computer vision approaches for phenotypic profiling. J Cell Biol. 2017;216:65–71.CrossRef Grys BT, Lo DS, Sahin N, Kraus OZ, Morris Q, Boone C, Andrews BJ. Machine learning and computer vision approaches for phenotypic profiling. J Cell Biol. 2017;216:65–71.CrossRef
37.
38.
go back to reference Bian Q, Cahan P. Computational tools for stem cell biology. Trends Biotechnol. 2016;34:993–1009.CrossRef Bian Q, Cahan P. Computational tools for stem cell biology. Trends Biotechnol. 2016;34:993–1009.CrossRef
39.
go back to reference Lipton ZC, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:150600019; 2015. Lipton ZC, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:150600019; 2015.
40.
go back to reference Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–22.CrossRef Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–22.CrossRef
41.
go back to reference Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA. An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40:499.CrossRef Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA. An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40:499.CrossRef
42.
go back to reference Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.CrossRef Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.CrossRef
43.
go back to reference Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG. Core transcriptional regulatory circuitry in human embryonic stem cells. cell. 2005;122:947–56.CrossRef Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG. Core transcriptional regulatory circuitry in human embryonic stem cells. cell. 2005;122:947–56.CrossRef
44.
go back to reference Hamazaki T, El Rouby N, Fredette NC, Santostefano KE, Terada N. Concise review: induced pluripotent stem cell research in the era of precision medicine. Stem Cells. 2017;35:545–50.CrossRef Hamazaki T, El Rouby N, Fredette NC, Santostefano KE, Terada N. Concise review: induced pluripotent stem cell research in the era of precision medicine. Stem Cells. 2017;35:545–50.CrossRef
45.
go back to reference Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19:193–204.CrossRef Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19:193–204.CrossRef
46.
go back to reference Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004;10:55.CrossRef Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004;10:55.CrossRef
47.
go back to reference Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee H-S, Sritanaudomchai H. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153:1228–38.CrossRef Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee H-S, Sritanaudomchai H. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153:1228–38.CrossRef
48.
go back to reference Vallier L, Alexander M, Pedersen RA. Activin/nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci. 2005;118:4495–509.CrossRef Vallier L, Alexander M, Pedersen RA. Activin/nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci. 2005;118:4495–509.CrossRef
49.
go back to reference Zhao XD, Han X, Chew JL, Liu J, Chiu KP, Choo A, Orlov YL, Sung W-K, Shahab A, Kuznetsov VA. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell. 2007;1:286–98.CrossRef Zhao XD, Han X, Chew JL, Liu J, Chiu KP, Choo A, Orlov YL, Sung W-K, Shahab A, Kuznetsov VA. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell. 2007;1:286–98.CrossRef
50.
go back to reference Smarandache F. Neutrosophic logic-a generalization of the intuitionistic fuzzy logic. Multispace & Multistructure Neutrosophic Transdisciplinarity (100 collected papers of Science). 2010;4:396. Smarandache F. Neutrosophic logic-a generalization of the intuitionistic fuzzy logic. Multispace & Multistructure Neutrosophic Transdisciplinarity (100 collected papers of Science). 2010;4:396.
51.
go back to reference Groumpos VP, Biniari K, Groumpos PP. A new mathematical modelling approach for viticulture and winemaking using fuzzy cognitive maps. Paper presented at: ELEKTRO, 2016 (IEEE); 2016. Groumpos VP, Biniari K, Groumpos PP. A new mathematical modelling approach for viticulture and winemaking using fuzzy cognitive maps. Paper presented at: ELEKTRO, 2016 (IEEE); 2016.
52.
go back to reference Wang H, Raj B, Xing EP. On the origin of deep learning. arXiv preprint arXiv:170207800; 2017. Wang H, Raj B, Xing EP. On the origin of deep learning. arXiv preprint arXiv:170207800; 2017.
53.
go back to reference Kandasamy WV, Smarandache F. Fuzzy cognitive maps and neutrosophic cognitive maps (infinite study); 2003. Kandasamy WV, Smarandache F. Fuzzy cognitive maps and neutrosophic cognitive maps (infinite study); 2003.
54.
go back to reference William MA, Devadoss AV, Sheeba JJ. A study on Neutrosophic cognitive maps (NCMs) by analyzing the risk factors of breast Cancer. International Journal of Scientific & Engineering Research. 2013;4:1–4. William MA, Devadoss AV, Sheeba JJ. A study on Neutrosophic cognitive maps (NCMs) by analyzing the risk factors of breast Cancer. International Journal of Scientific & Engineering Research. 2013;4:1–4.
55.
go back to reference Elliott DL. A better activation function for artificial neural networks; 1993. Elliott DL. A better activation function for artificial neural networks; 1993.
Metadata
Title
DeepNEU: cellular reprogramming comes of age – a machine learning platform with application to rare diseases research
Author
Wayne R. Danter
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2019
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-018-0983-3

Other articles of this Issue 1/2019

Orphanet Journal of Rare Diseases 1/2019 Go to the issue